Snow Hydrologyhydrology Importanceimportance Ofof Snowsnow Soso What?What?

Total Page:16

File Type:pdf, Size:1020Kb

Snow Hydrologyhydrology Importanceimportance Ofof Snowsnow Soso What?What? FieldField MethodsMethods inin SnowSnow HydrologyHydrology ImportanceImportance ofof snowsnow SoSo what?what? The water of the world • Oceans: 97.24 % • Polar Ice: 2.15% • Groundwater: 0.61% • Lakes: 0.17% • Soil moisture: 0.005% • Atmosphere: 0.0001% • Rivers: 0.00001% • * There is a total of 0.78511% of the worlds water that is fresh and not frozen! (not all is available for use, and in fact, very little is useable) • Add: ½ groundwater, lakes, rivers and you have: 0.47501% of the worlds water available for use • • * In some areas, 50% of the surface water is polluted and non-useable. Realistically, we may have only 0.25% available for use. Terrestrial Cryosphere On average, 60% of the Northern Hemisphere has snowcover in midwinter. Over 30% of the Earth’s land surface has seasonal snow. About 10% of the Earth’s surface is covered permanently by snow and ice. Seasonally and permanently frozen soils occur over ~35% of the Earth’s land surface. Spatial extent of frozen and thawed areas vary significantly on daily, seasonal, annually, and interannual time scales. SoSo what?what? A. Effect of snow cover on climate – Albedo-reflectivity (new snow ~0.8-0.9, older snow ~0.5-0.6). Compare this to ice 0.3-0.4, forest 0.03-0.2, and water 0.05- 0.3 Result: blocks incoming radiation from heating the surface so solar radiation is returned to space instead of being retained as heat in the atmosphere. Strong climate effects: – Surface temperature-stay depressed over snow. – Ground temperatures-with low thermal conductivity, snow serves as an insulator and keep vast area of soil unfrozen. • Climate feedbacks- more snow decreases temp which cause more snow which will persist longer. SoSo what?what? B.B. ImportanceImportance inin waterwater resourcesresources • Controls the hydrologic cycle- water is stored over the winter and released in a pulse during the spring melt. Present difficulties for water managers, reason for existence of reservoirs. • Frozen water = 80% of fresh water on earth • Major contributor to river and ground water in mid/high latitudes. Ex. Seasonal snowcovers- western US: CA 80% of water, Co 70% of water. SoSo what?what? C. Avalanches – impacts on backcountry and mountain residents: • Estimated to be 100,000 in the US on average, ~ 10,000 reported and 100 or 1% are problematic – property damage, injury, death. • Damage to buildings and structures – only $1/2 million per year in US, but much higher in Europe because of dense populations. SoSo what?what? •• SnowmeltSnowmelt floodsfloods areare aa severesevere problem:problem: – Red River of the North, April 1997 • $4 Billion in Damages – Northeast Floods, January 1996 • Delaware R., Hudson R., Ohio R., Susquehanna R., Potomac R. • 33 Deaths, $1.5 Billion in Damages SnowSnow HydrologyHydrology UnderstandingUnderstanding andand predictingpredicting thethe physicalphysical processesprocesses of:of: •• SnowSnow AccumulationAccumulation •• AblationAblation •• MeltMelt WaterWater RunoffRunoff SnowSnow HydrologyHydrology 44 SimultaneousSimultaneous EstimationEstimation ProblemsProblems –– thethe quantityquantity ofof waterwater heldheld inin snowsnow packspacks –– thethe magnitudemagnitude andand raterate ofof waterwater lostlost toto thethe atmosphereatmosphere byby sublimationsublimation –– thethe timing,timing, rate,rate, andand magnitudemagnitude ofof snowsnow meltmelt –– thethe fatefate ofof meltmelt waterwater OverviewOverview •• SnowSnow GeographyGeography •• SnowSnow MetamorphismMetamorphism •• TheThe mountainmountain snowpacksnowpack •• SnowSnow energyenergy exchangesexchanges •• SnowSnow measurementsmeasurements –– GroundGround –– AirAir andand spacespace borneborne SnowSnow GeographyGeography Precipitation,Precipitation, Distribution,Distribution, RedistributionRedistribution WhatWhat factorsfactors controlcontrol thethe distributiondistribution ofof snowsnow extentextent andand snowsnow waterwater equivalentequivalent (SWE)?(SWE)? ItIt dependsdepends onon thethe scale.scale. ••ContinentalContinental ScaleScale ••MesoscaleMesoscale ••BasinBasin ScaleScale SnowSnow CoverCover DistributionDistribution Three Spatial Scales Macroscale • Areas up to 106 km2. • Characteristic Distances of 10-1000 km. • Dynamic meteorological effects are important. Mesoscale • Characteristic Distances of 100 m to 10 km. • Redistribution of snow along relief features due to wind. • Deposition and accumulation of snow may be related to terrain variables and to vegetation cover. Microscale • Characteristic Distances of 10 to 100 m. • Differences in accumulation result from variations in air flow patterns and transport. ContinentalContinental ScaleScale • Latitude • Elevation • Orography MesoscaleMesoscale/Regional/Regional • Synoptic scale storms Toulomne • Elevation Mono lake • Topographic configuration • Topographic configuration Merced Owens Valley Central Valley 17 BasinBasin ScaleScale (our(our mainmain interest)interest) •Wind Redistribution •Avalanche Redistribution •Terrain Configuration •Vegetation Properties MountainMountain SnowpackSnowpack CharacteristicsCharacteristics •• WindWind distributiondistribution •• AvalancheAvalanche redistributionredistribution MicroMicro scalescale Open Environments – Over highly exposed terrain, the effects of meso- and micro-scale differences in vegetation and terrain features may produce wide variations in accumulation patterns. JetJet StreamStream PolarPolar andand SubtropicalSubtropical •• BoundaryBoundary betweenbetween differingdiffering airair massesmasses •• SteersSteers StormsStorms •• BirthplaceBirthplace ofof stormsstorms systemssystems StormStorm TracksTracks •• MostMost commoncommon birthbirth place:place: GulfGulf ofof AlaskaAlaska •• ClippersClippers •• PineapplePineapple ExpressExpress •• NevadaNevada oror TonopahTonopah LowsLows •• ColoradoColorado LowLow LIFTINGLIFTING PROCESSESPROCESSES •• CyclonicCyclonic LiftingLifting •• FrontalFrontal LiftingLifting •• OrographicOrographic LiftingLifting •• JetJet SupportSupport CyclonicCyclonic LiftingLifting AroundAround aa LowLow \ FrontalFrontal LiftingLifting OrographicOrographic LiftingLifting • Air is forced up over the Sierra’s • Expansional cooling leads to condensation and precipitation on the windward side • Compressional heating and evaporation on the lee side • Rain Shadow MostMost favorablefavorable alignmentsalignments forfor OrographicOrographic enhancementsenhancements… •• PerpendicularPerpendicular •• ConcaveConcave AnatomyAnatomy ofof aa SnowSnow CrystalCrystal Dendrite Sectored Plate Dendritic Needle Prism Sectored Plate (Column) NorthernNorthern CaliforniaCalifornia WeatherWeather PacificPacific “High”“High” –– DeclinesDeclines inin winterwinter andand letslets stormsstorms throughthrough –– IncreasesIncreases inin summersummer && keepskeeps stormsstorms outout –– AirAir warmedwarmed atat equatorequator risesrises && headsheads forfor Arctic.Arctic. SomeSome ofof itit cools/sinks.cools/sinks. ThisThis “mountain”“mountain” ofof coolcool airair weighsweighs heavyheavy (high(high pressure)pressure) onon surfacesurface –– WinterWinter –– GulfGulf ofof AlaskaAlaska && SouthernSouthern CaliforniaCalifornia highhigh (offshore)(offshore) NorthernNorthern CaliforniaCalifornia WeatherWeather SierraSierra isis aa maritimemaritime climateclimate –– StormsStorms holdhold moremore moisture.moisture. RockiesRockies havehave lessless waterwater contentcontent soso snowsnow isis drierdrier Ocean Coast Range Sierra Rockies ContinentalContinental SnowpackSnowpack •• ShallowShallow snowpacksnowpack •• LowLow densitydensity (( 7070 kg/mkg/m3 newnew snowsnow density)density) •• LowLow airair temperaturestemperatures ((--7.37.3 oCC)) •• DepthDepth hoarhoar –– hidden,hidden, persistentpersistent instabilitiesinstabilities •• HighHigh temperature/vaportemperature/vapor gradientgradient (( >> 1010 oCC/m,/m, atat timestimes >>>> 1010 oCC/m)/m) •• ExampleExample ranges:ranges: RockyRocky MountainsMountains (Colorado,(Colorado, NewNew Mexico,Mexico, Montana,Montana, Wyoming,Wyoming, Canada).Canada). MaritimeMaritime SnowpacksSnowpacks •• DeepDeep snowpacksnowpack •• HighHigh densitydensity (120(120 kg/mkg/m3 newnew snowsnow density)density) •• ModerateModerate airair temperaturestemperatures ((--1.31.3 oCC)) •• LowLow temperature/vaportemperature/vapor pressurepressure gradientgradient (<(< 1010 oCC/m)/m) •• AvalanchesAvalanches duringduring oror immediatelyimmediately afterafter stormsstorms •• ExampleExample ranges:ranges: SierraSierra Nevada,Nevada, Cascades,Cascades, CoastCoast RangeRange (B.C.)(B.C.) TransitionalTransitional ClimateClimate TransitionalTransitional snowpackssnowpacks----likelike thatthat ofof Utah'sUtah's WasatchWasatch MountainsMountains----exhibitexhibit characteristicscharacteristics ofof bothboth MaritimeMaritime andand ContinentalContinental snowpacks.snowpacks. ContinentalContinental MaritimeMaritime Data source: Western Regional Climate Center SnowSnow metamorphismmetamorphism 1.1. DefinitionsDefinitions 2.2. InitialInitial metamorphismmetamorphism 3.3. EquilibriumEquilibrium processesprocesses 4.4. KineticKinetic processesprocesses 5.5. Melt/FreezeMelt/Freeze 6.6. MountainMountain snowpacksnowpack characteristicscharacteristics DensityDensity –– MassMass perper volume,volume, usuallyusually specifiedspecified inin kilogramkilogram perper cubiccubic metermeter oror asas percentpercent water.water. –– IndicatorIndicator ofof strengthstrength andand thethe formationformation ofof aa slab.slab. TemperatureTemperature GradientGradient –– TemperatureTemperature variationsvariations
Recommended publications
  • Simulations of the Sea Ice Thermal Microwave Emissivity
    Simulations of the sea ice thermal microwave emissivity Rasmus Tonboe, Danish Meteorological Institute A short introduction to sea ice for microwave radiometry New ice First-year ice First-year ice Ridges/ deformed ice Multiyear ice Melt-ponds Refrozen meltponds Emission modelling why and where? • Estimation of uncertainties in sea ice concentration, sea ice thickness, snow surface temperature… • For simplification of forward models to reduce the computational cost or to reduce the number of free parameters. • Understanding limitations and ambiguities for example between salinity, thickness and ice concentration in thin ice thickness estimation using SMOS. • For planning of field campaigns which parameters to sample. • For use in parameter retrieval or data assimilation for example in snow cover retrival. Forward emission and scattering models • Empirical models: the gradient ratio snow thickness algorithm, ice concentration algorithms. • Semi-empirical models: the OSISAF near 50GHz emissivity model • Sofisticated physical models: for example MEMLS with multiple layers, multiple reflections, volume and surface scattering interaction. These models are valid in the range roughly 1-100 GHz and some of these principles can also be used at higher frequencies (>100GHz). However, for ICI frequencies (183- 664GHz) the emission processes are from a shallow layer at the snow surface and the models for permittivity and scattering have not been tested in this range. The snow thickness algorithm -an empirical regression model The line slope and offset
    [Show full text]
  • Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016
    Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016 POLAR CIRCUS AVALANCHE RESPONSE, FEBRUARY 5-11, 2015 Stephen Holeczi* and Grant Statham Parks Canada Visitor Safety, Lake Louise, Alberta, Canada ABSTRACT: On the evening of February 5, 2015, two Canadian Military Search and Rescue Technicians (SAR Tech) on an official training exercise were descending after an ascent of Polar Circus, a 700m water ice climb located in Banff National Park in the Canadian Rockies. In deteriorating weather, one member of the team was swept away by an avalanche, un-roped, above an ice feature known as “The Pencil”. His partner was left to descend alone and initiate a search. The climbers were not carrying avalanche safety equipment and the partner could not find any surface clues on his descent. Six days later, his body was recovered by Parks Canada SAR staff. This paper will focus on how searchers conducted their risk assessments, an analysis of the exposure time to rescuers, and will advocate to encourage climbers to wear avalanche safety gear. KEYWORDS: avalanche, mitigation, risk, exposure 1.0 Introduction dark. Visitor Safety Specialists (VSS) in Banff were notified by phone at 23:30. Polar Circus is a popular waterfall ice climb in the Canadian Rockies. It climbs at a moderate grade Feb. 6: An initial helicopter recce that morning by and sees almost daily ascents during the winter. (VSS) from Banff could not locate any surface Many consider it an “alpine climb” since it clues and the avalanche victim was deemed to be traverses large alpine slopes and is subject to deceased.
    [Show full text]
  • Snow Avalanches J
    , . ^^'- If A HANDBOOK OF FORECASTING AND CONTROL MEASURE! Agriculture Handbook No. 194 January 1961 FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE Ai^ JANUARY 1961 AGRICULTURE HANDBOOK NO. 194 SNOW AVALANCHES J A Handbook of Forecasting and Control Measures k FSH2 2332.81 SNOW AVALANCHES :}o U^»TED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE SNOW AVALANCHES FSH2 2332.81 Contents INTRODUCTION 6.1 Snow Study Chart 6.2 Storm Plot and Storm Report Records CHAPTER 1 6.3 Snow Pit Studies 6.4 Time Profile AVALANCHE HAZARD AND PAST STUDIES CHAPTER 7 CHAPTER 2 7 SNOW STABILIZATION 7.1 Test and Protective Skiing 2 PHYSICS OF THE SNOW COVER 7.2 Explosives 2.1 The Solid Phase of the Hydrologie Cycle 7.21 Hand-Placed Charges 2.2 Formation of Snow in the Atmosphere 7.22 Artillery 2.3 Formation and Character of the Snow Cover CHAPTER 8 2.4 Mechanical Properties of Snow 8 SAFETY 2.5 Thermal Properties of the Snow Cover 8.1 Safety Objectives 2.6 Examples of Weather Influence on the Snow Cover 8.2 Safety Principles 8.3 Safety Regulations CHAPTER 3 8.31 Personnel 8.32 Avalanche Test and Protective Skiing 3 AVALANCHE CHARACTERISTICS 8.33 Avalanche Blasting 3.1 Avalanche Classification 8.34 Exceptions to Safety Code 3.11 Loose Snow Avalanches 3.12 Slab Avalanches CHAPTER 9 3.2 Tyi)es 3.3 Size 9 AVALANCHE DEFENSES 3.4 Avalanche Triggers 9.1 Diversion Barriers 9.2 Stabilization Barriers CHAPTER 4 9.3 Barrier Design Factors 4 TERRAIN 9.4 Reforestation 4.1 Slope Angle CHAPTER 10 4.2 Slope Profile 4.3 Ground Cover and Vegetation 10 AVALANCHE RESCUE 4.4 Slope
    [Show full text]
  • In This Issue Forest Service National Avalanche Center Skiing Steep, Open, and Un-Groomed Terrain Means That from the President
    VOLUME 28, NO. 1 • OCTOBER 2009 December 17, 2008 Toledo Bowl Little Cottonwood Canyon, Utah Photo by Bruce Tremper There we were! I was up with Liam Fitzgerald and the boys looking at a human-triggered avalanche in Season the nearby bowl when we got a call that someone triggered this slide. Liam and I went over to have a look. We talked with the folks who triggered it. The tracks tell the story. Roundup Four people skied the straight south facing slope, then the fifth decided to put a track in where it wraps around a little east facing. He collapsed the slope and it 2008/09 pulled out the slide above and to the side, and he scooted off and was not caught. It was the first avalanche of the big avalanche cycle. The notorious depth hoar with a rain crust on top with more facets above the crust was slowly being overloaded by new snow. The south-facing slopes were very stable, but as soon as you wrapped around to the east, you were in a different world. It’s a common scenario in depth hoar climates where people get a quick education in the importance of aspect. These folks lived to tell the tale and I got a great educational photo in the process. In This Issue Forest Service National Avalanche Center skiing steep, open, and un-groomed terrain means that From the President. 2 The Forest Service National Avalanche Center (FSNAC) there are 8.5-million skier visits to inbounds avalanche From the Editor . 2 thanks and congratulates all of you in the snow-safety terrain.
    [Show full text]
  • Long-Term Hydrological Response to Forest Harvest During Seasonal Low flow: Potential Implications for Current Forest Practices☆
    Science of the Total Environment 730 (2020) 138926 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Review Long-term hydrological response to forest harvest during seasonal low flow: Potential implications for current forest practices☆ Ashley A. Coble a,⁎, Holly Barnard b, Enhao Du c, Sherri Johnson d, Julia Jones e, Elizabeth Keppeler f, Hyojung Kwon g, Timothy E. Link c, Brooke E. Penaluna d, Maryanne Reiter h, Mark River h, Klaus Puettmann g, Joseph Wagenbrenner i a National Council for Air and Stream Improvement, Inc., 227 NW Third St., Corvallis, OR 97330, USA b Department of Geography, Institute of Arctic and Alpine Research University of Colorado, Boulder, CO, USA c College of Natural Resources, University of Idaho, Moscow, ID, USA d USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA e Geography CEOAS, Oregon State University, Corvallis, OR, USA f USDA Forest Service, Pacific Southwest Research Station, Fort Bragg, CA, USA g Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA h Weyerhaeuser Company, Springfield, OR, USA i USDA Forest Service, Pacific Southwest Research Station, Arcata, CA, USA HIGHLIGHTS GRAPHICAL ABSTRACT • Climate-related low flow declines may also be influenced by forest manage- ment. • Few studies describe multi-decade ef- fects of forest management on streamflow. • We assembled catchment studies of long-term effects of harvest (N10 years). • We define 3 periods of expected low flow responses to forest regrowth after harvest. • Decreased low flow was observed years after harvest in 16 of 25 catchments. article info abstract Article history: Seasonal changes in the magnitude and duration of streamflow can have important implications for aquatic spe- Received 24 March 2020 cies, drinking water supplies, and water quality.
    [Show full text]
  • 11Th International Conference on the Physics and Chemistry of Ice, PCI
    11th International Conference on the Physics and Chemistry of Ice (PCI-2006) Bremerhaven, Germany, 23-28 July 2006 Abstracts _______________________________________________ Edited by Frank Wilhelms and Werner F. Kuhs Ber. Polarforsch. Meeresforsch. 549 (2007) ISSN 1618-3193 Frank Wilhelms, Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstrasse, D-27568 Bremerhaven, Germany Werner F. Kuhs, Universität Göttingen, GZG, Abt. Kristallographie Goldschmidtstr. 1, D-37077 Göttingen, Germany Preface The 11th International Conference on the Physics and Chemistry of Ice (PCI- 2006) took place in Bremerhaven, Germany, 23-28 July 2006. It was jointly organized by the University of Göttingen and the Alfred-Wegener-Institute (AWI), the main German institution for polar research. The attendance was higher than ever with 157 scientists from 20 nations highlighting the ever increasing interest in the various frozen forms of water. As the preceding conferences PCI-2006 was organized under the auspices of an International Scientific Committee. This committee was led for many years by John W. Glen and is chaired since 2002 by Stephen H. Kirby. Professor John W. Glen was honoured during PCI-2006 for his seminal contributions to the field of ice physics and his four decades of dedicated leadership of the International Conferences on the Physics and Chemistry of Ice. The members of the International Scientific Committee preparing PCI-2006 were J.Paul Devlin, John W. Glen, Takeo Hondoh, Stephen H. Kirby, Werner F. Kuhs, Norikazu Maeno, Victor F. Petrenko, Patricia L.M. Plummer, and John S. Tse; the final program was the responsibility of Werner F. Kuhs. The oral presentations were given in the premises of the Deutsches Schiffahrtsmuseum (DSM) a few meters away from the Alfred-Wegener-Institute.
    [Show full text]
  • Downloaded 09/27/21 11:47 PM UTC 25.2 METEOROLOGICAL MONOGRAPHS VOLUME 59
    CHAPTER 25 PETERS-LIDARD ET AL. 25.1 Chapter 25 100 Years of Progress in Hydrology a b c c CHRISTA D. PETERS-LIDARD, FAISAL HOSSAIN, L. RUBY LEUNG, NATE MCDOWELL, d e f g MATTHEW RODELL, FRANCISCO J. TAPIADOR, F. JOE TURK, AND ANDREW WOOD a Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland b Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington c Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington d Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland e Department of Environmental Sciences, Institute of Environmental Sciences, University of Castilla–La Mancha, Toledo, Spain f Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California g Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The focus of this chapter is progress in hydrology for the last 100 years. During this period, we have seen a marked transition from practical engineering hydrology to fundamental developments in hydrologic science, including contributions to Earth system science. The first three sections in this chapter review advances in theory, observations, and hydrologic prediction. Building on this foundation, the growth of global hydrology, land–atmosphere interactions and coupling, ecohydrology, and water management are discussed, as well as a brief summary of emerging challenges and future directions. Although the review attempts
    [Show full text]
  • Ice Engineering and Avalanche Forecasting and Control Gold, L
    NRC Publications Archive Archives des publications du CNRC Ice engineering and avalanche forecasting and control Gold, L. W.; Williams, G. P. This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Publisher’s version / Version de l'éditeur: Technical Memorandum (National Research Council of Canada. Division of Building Research); no. DBR-TM-98, 1969-10-23 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=50c4a1f1-0608-4db2-9ccd-74b038ef41bb https://publications-cnrc.canada.ca/fra/voir/objet/?id=50c4a1f1-0608-4db2-9ccd-74b038ef41bb Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées.
    [Show full text]
  • Snowterm: a Thesaurus on Snow and Ice Hierarchical and Alphabetical Listings
    Quaderno tematico SNOWTERM: A THESAURUS ON SNOW AND ICE HIERARCHICAL AND ALPHABETICAL LISTINGS Paolo Plini , Rosamaria Salvatori , Mauro Valt , Valentina De Santis, Sabina Di Franco Version: November 2008 Quaderno tematico EKOLab n° 2 SnowTerm: a thesaurus on snow and ice hierarchical and alphabetical listings Version: November 2008 Paolo Plini1, Rosamaria Salvatori2, Mauro Valt3, Valentina De Santis1, Sabina Di Franco1 Abstract SnowTerm is the result of an ongoing work on a structured reference multilingual scientific and technical vocabulary covering the terminology of a specific knowledge domain like the polar and the mountain environment. The terminological system contains around 3.700 terms and it is arranged according to the EARTh thesaurus semantic model. It is foreseen an updated and expanded version of this system. 1. Introduction The use, management and diffusion of information is changing very quickly in the environmental domain, due also to the increased use of Internet, which has resulted in people having at their disposition a large sphere of information and has subsequently increased the need for multilingualism. To exploit the interchange of data, it is necessary to overcome problems of interoperability that exist at both the semantic and technological level and by improving our understanding of the semantics of the data. This can be achieved only by using a controlled and shared language. After a research on the internet, several glossaries related to polar and mountain environment were found, written mainly in English. Typically these glossaries -with a few exceptions- are not structured and are presented as flat lists containing one or more definitions. The occurrence of multiple definitions might contribute to increase the semantic ambiguity, leaving up to the user the decision about the preferred meaning of a term.
    [Show full text]
  • Snowpack and Firn Densification in the Energy Exascale Earth System Model
    https://doi.org/10.5194/gmd-2020-247 Preprint. Discussion started: 13 August 2020 c Author(s) 2020. CC BY 4.0 License. Snowpack and firn densification in the Energy Exascale Earth System Model (E3SM) (version 1.2) Adam M. Schneider1, Charles S. Zender1, and Stephen F. Price2 1University of California, Irvine, Department of Earth System Science, Croul Hall, Irvine, CA 92697-3100 2Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. Correspondence: Adam Schneider ([email protected]) Abstract. Earth’s largest island, Greenland, and the Antarctic continent are both covered by massive ice sheets. A large fraction of their surfaces consist of multi-year snow, known as firn, which has undergone a process of densification since falling from the atmosphere. Until now this firn densification has not been fully accounted for in the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM). Here, we expand the E3SM Land Model (ELM) snowpack from 1 m to up to 60 m to 5 enable more accurate simulation of snowpack evolution. We test four densification models in a series of century-scale land surface simulations forced by atmospheric re-analyses, and evaluate these parameterizations against empirical density-versus- depth data. To tailor candidate densification models for use across the ice sheets’ dry-snow zones, we optimize parameters using a regularized least squares algorithm applied to two distinct stages of densification. We find that a dynamic implementation of a semi-empirical compaction model, originally calibrated to measurements from the Antarctic peninsula, gives results more 10 consistent with ice core measurements from the cold, dry snow zones of Greenland and Antarctica, compared to when using the original ELM snow compaction physics.
    [Show full text]
  • Iceberg Evolution Modelling : a Background Study Veitch, Brian; Daley, Claude
    NRC Publications Archive Archives des publications du CNRC Iceberg evolution modelling : A background study Veitch, Brian; Daley, Claude For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/12341002 PERD/CHC Report, OERC Report, 2000-05-06 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=4995d5c2-329b-4b3d-89f6-46aaac49bdbd https://publications-cnrc.canada.ca/fra/voir/objet/?id=4995d5c2-329b-4b3d-89f6-46aaac49bdbd Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected].
    [Show full text]
  • Snow, Weather, and Avalanches
    SNOW, WEATHER, AND AVALANCHES: Observation Guidelines for Avalanche Programs in the United States SNOW, WEATHER, AND AVALANCHES: Observation Guidelines for Avalanche Programs in the United States 3rd Edition 3rd Edition Revised by the American Avalanche Association Observation Standards Committee: Ethan Greene, Colorado Avalanche Information Center Karl Birkeland, USDA Forest Service National Avalanche Center Kelly Elder, USDA Forest Service Rocky Mountain Research Station Ian McCammon, Snowpit Technologies Mark Staples, USDA Forest Service Utah Avalanche Center Don Sharaf, Valdez Heli-Ski Guides/American Avalanche Institute Editor — Douglas Krause — Animas Avalanche Consulting Graphic Design — McKenzie Long — Cardinal Innovative © American Avalanche Association, 2016 ISBN-13: 978-0-9760118-1-1 American Avalanche Association P.O. Box 248 Victor, ID. 83455 [email protected] www. americanavalancheassociation.org Citation: American Avalanche Association, 2016. Snow, Weather and Avalanches: Observation Guidelines for Avalanche Programs in the United States (3rd ed). Victor, ID. FRONT COVER PHOTO: courtesy Flathead Avalanche Center BACK COVER PHOTO: Chris Marshall 2 PREFACE It has now been 12 years since the American Avalanche Association, in cooperation with the USDA Forest Service National Ava- lanche Center, published the inaugural edition of Snow, Weather and Avalanches: Observational Guidelines for Avalanche Programs in the United States. As those of us involved in that first edition grow greyer and more wrinkled, a whole new generation of avalanche professionals is growing up not ever realizing that there was a time when no such guidelines existed. Of course, back then the group was smaller and the reference of the day was the 1978 edition of Perla and Martinelli’s Avalanche Handbook.
    [Show full text]