<I>Nerocila Acuminata</I> (Isopoda, Cymothoidae)

Total Page:16

File Type:pdf, Size:1020Kb

<I>Nerocila Acuminata</I> (Isopoda, Cymothoidae) BULLETIN OF MARINE SCIENCE, 41(2): 351-360,1987 BEHAVIOR OF JUVENILE NEROCILA ACUMINATA (ISOPODA, CYMOTHOIDAE) DURING ATTACK, ATTACHMENT AND FEEDING ON FISH PREY Earl Segal ABSTRACT Juvenile Nerocila acuminata are blood and tissue feeders which, under laboratory condi- tions, show no prey specificity attaching to and feeding upon Menidia beryllina (silversides), Cyprinodon variegatus (sheepshead minnow), Mugil cephalus (mullet), Fundulus similis (kil- lifish), Trachynotus carolinus (pompano), Lagodon rhomboides (pinfish), and Anchoa mitchilli (anchovy) from the Gulf of Mexico. Attacks occurred either in mid-water or from the bottom. In mid-water, isopods would swim in from the rear, on any compass setting, adjusting their dorso-ventral swimming orientation to land with outstretched pereopods, Speed adjustments were precise since, in over 50 attacks, overshooting did not occur. From the bottom, isopods which were lying on their backs with the first three pairs of per eopods extended, either hooked a slowly passing fish or flipped their pleopods and propelled themselves onto a fish. Thus, juvenile N. acuminata are behaviorally equipped to attack either pelagic or demersal fishes. Undamaged fish did not respond overtly either to the sight of or transient contact with the isopods; damaged fish took evasive action. If attachment occurred on the body rather than on the fins, the fish responded with a variety of dislodgment tactics the vigor of which diminished with additional attachments. In the isopod family Cymothoidae all known species appear to be pelagic while young (Williams, 1984) and either parasitic or commensal as adults when they take up residence on host fish by one of three modes: by attaching to the surface; by entering the gill chamber and/or buccal cavity; or by burrowing under the epidermis. Recently, Brusca (1981) has monographed the Cymothoidae of the eastern Pacific while offering extensive insights into the developmental and life histories, host parasite relations and ecological ramifications of host specificity of various species. Almost all the available information concems the adults; juveniles are poorly known and their relationships to their hosts or prey are little understood. A fortuitous collection of juvenile Nerocifa acuminata Schioedte and Meinert 1881 from the Gulf of Mexico offered an opportunity for a detailed descriptive study of various aspects of their behavior while swimming, feeding and interacting with their prey. In a more limited way it presented a situation for observing the responses of prey to small predators, a subject Barlow (pers. comm.) feels has been sadly neglected. Since juvenile N. acuminata will be shown to be temporary blood feeders I consider them to be micropredators rather than parasites making the same dis- tinction Marshall (1981) does when comparing Diptera that land on their hosts to take a blood meal then flyaway with those that spend their lives on their hosts whether they feed or not. Thus fish upon whom juvenile N. acuminata feed are their prey. MATERIALS AND METHODS From 10 December 1961 through 19 May 1962, 8 I juvenile Nerocila acuminata Shioedte and Meinert, 1881, were collected in seine hauls from an isolated shallow lagoon to the west side of the Houston ship channel jetty on Galveston Island, Texas. Collections were made on 10 December (-60 specimens), 17 December (3), 25 January (15 collected, 10 recovered), 8 May (I) and 19 May (2). The last collection on 19 May was from a smaller back beach lagoon which received some fresh water 351 352 BULLETIN OF MARINE SCIENCE. VOL. 41. NO.2. 1987 over and through the ship channel wall. Systematic attempts to obtain additional N. acuminata over the following1.5years and isolated attempts over the next 15years were unsuccessful.In the aftermath of hurricane Carla, which hit the Texas coast during the fall of 1961,a buildup of sand occurred along the beaches and in the lagoons on Galveston Island progressively blocking entrances and cutting off water exchange.With the warming of the shallow lagoon water during the spring and summer of 1962 (33°Con 19 May in the isolated lagoon)Sargassum sp., which had accumulated during the hurricane, died and decayed, effectivelykilling the lagoons. When the animals were captured the majority had a bright red gut. Numerous fish (see Results) were seined with the isopods but on no occasion were the isopods found on the fishin the seine. Both isopods and fishwere returned alive to the laboratory at Rice University in Houston and housed apart in aquaria and plastic boxes. All fish collected with the juvenile N. acuminata were young and adults of small species,e.g., Cyprinodon variegatus, Fundulus similis and Menidia beryllina or youngoflarger species, e.g., MugU cephalus and Trachynotus carolinus. Becauseof limitations in laboratory holding space, no attempt was made to procure larger fish from the lagoon. Both isopods and fishes were maintained and tested at 15°Cand 280/00sal. in natural lagoon water (conditions under which the animals were collected).All observations of and arranged interactions between isopods and fish were carried out with one primary objective-to record the actions of livingjuvenile cymothoid isopods. Responses of the prey were noted. RESULTS External Features. -Figure IA illustrates the dimensions and shape of a repre- sentative juvenile Nerocila acuminata. The eyes are large, oval and curved around the sides of the head. This is characteristic offree swimming, juvenile cymothoid isopods. In every individual there are a minimum of two rows of ommatidial facets on the ventral surface of the head. The uropods, pleopods and pleotelson all possess plumose marginal setae. All seven pairs of pereopods are prehensile, terminating in long, narrow, curved dactyli. Pigmentation is extensive, consisting of myriad aggregations of starburst shaped chromatophores. Size. - Of the 13 juveniles subsequently available for measurement, the largest was 18.6 mm (L) by 5.1 mm (W) with a body index (L-W) of 3.65 while the smallest was 12.8 mm (L) by 3.9 mm (W) with a body index of 3.28. However, body indices ranged from 3.28 to 3.95 with an X of3.58 and no discernible trend of body index with body size. Non-prey Oriented Behavior. -SWIMMING. As swimmers the animals were re- markably graceful and adroit. They swam rapidly in a straight line interspersing loops, half immelmans and turns. They normally swam ventral side down but occasionally switched to dorsal side down for short distances when they reversed direction after bouncing off an obstacle, e.g., a fish or the sides of the aquarium (Fig. 2A). On no occasion did the isopods avoid an obstacle by changing course before contact. Upon contact they either looped upward or downward and headed in the opposite direction. Or, the animals turned to either side, on the horizontal or the oblique, and continued on whatever angle their turns took them. Much of the swimming appeared to be random and non-prey oriented. NON-SWIMMING. Periodically the animals would glide to a halt on the bottom, ventral side down. After a few seconds to a few minutes they would resume swimming with the same dorso-ventral orientation. Occasionally isopods settled on the bottom, ventral side up. Since this invariably led to an attack it will be presented below. Molting, with cessation of swimming and feeding, also took place on the bottom. Nine individuals attached by the first three pairs of pereopods to any available bottom projection. Three remained in the original attachment location; two for 3 and one for 4 days. The latter completed the molt and resumed swimming. All others either died or disappeared and were presumably eaten. SEGAL: BEHAVIOR OF JUVENILE NEROC/LA ACUM/NATA PREYING ON FISH 353 Figure IA. Representative, free swimmingjuvenile Nerocila acuminata with characteristic large eyes, streamlined shape and pereopods ending in long, curved dactyli. Figure lB. Menidia beryl/ina (silverside) hosting 10juvenile N. acuminata (three individuals on right side). All isopods arc oriented in the same direction. Dark gut of isopods indicates feeding. Prey Oriented Behavior. - Isopod attacks took place either while both parties were swimming or when a fish swam slowly over an isopod which was lying on the bottom, ventral side up. In the swimming mode, isopods always approached from the rear, maintaining in the dorsal position, or assuming in all other positions, an appropriate attachment orientation. Thus, an isopod coming in from above would, depending upon its approach speed, either glide in or spurt in on the dorsal or dorsolateral surface; an isopod approaching from below would reorient 1800 on its axis and come in ventrally (Fig. 2B). From any other compass orientation 354 BULLETIN OF MARINE SCIENCE, VOL. 41, NO.2, 1987 Figure 2A. (Left) Non-feeding contact behavior of N. acuminata and potential prey fish. Figure 2B. (Right) Mid-water attack behavior of juvenile N. acuminata. Attacks were always from the rear either above, below or to the sides of the fish. an isopod would tilt accordingly and swim in on the flank. Speed adjustments appeared to be precise since of the more than 50 observed swimming attacks not one resulted in an overshoot. Whether an attack resulted in an attachment de- pended, in good part, on the response of the prey (see below). In the bottom attack the isopod played a relatively passive role. Lying on its back with limbs extended it could hook, with its first three pairs of pereopods, any accessible region of a slowly passing fish. Occasionally, when contact had not been made, an isopod would flip its pleopods and propel itself onto the fish. Invariably, a bottom attack resulted in attachment to an anal fin (Fig. 2C). If an attack was successful an isopod did not necessarily remain at the site of attachment. Isopods were capable of crawling over the surface to the degree that no area of a fish was inviolate.
Recommended publications
  • Crustacea, Isopoda) from the Indian Ocean Coast of South Africa, with a Key to the Externally Attaching Genera of Cymothoidae
    A peer-reviewed open-access journal ZooKeys 889: 1–15 (2019) Bambalocra, a new genus of Cymothoidae 1 doi: 10.3897/zookeys.889.38638 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new genus and species of fish parasitic cymothoid (Crustacea, Isopoda) from the Indian Ocean coast of South Africa, with a key to the externally attaching genera of Cymothoidae Niel L. Bruce1,2, Rachel L. Welicky2,3, Kerry A. Hadfield2, Nico J. Smit2 1 Biodiversity & Geosciences Program, Queensland Museum, PO Box: 3300, South Brisbane BC, Queensland 4101, Australia 2 Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa 3 School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, 98105, USA Corresponding author: Niel L. Bruce ([email protected]) Academic editor: Saskia Brix | Received 30 July 2019 | Accepted 9 October 2019 | Published 14 November 2019 http://zoobank.org/88E937E5-7C48-49F8-8260-09872CB08683 Citation: Bruce NL, Welicky RL, Hadfield KA, Smit NJ (2019) A new genus and species of fish parasitic cymothoid (Crustacea, Isopoda) from the Indian Ocean coast of South Africa, with a key to the externally attaching genera of Cymothoidae. ZooKeys 889: 1–15. https://doi.org/10.3897/zookeys.889.38638 Abstract Bambalocra intwala gen. et sp. nov. is described from Sodwana Bay, north-eastern South Africa. The monotypic genus is characterised by the broadly truncate anterior margin of the head with a ventral ros- trum, coxae 2–5 being ventral in position not forming part of the body outline and not or barely visible in dorsal view, and the posterolateral margins of pereonites 6 and 7 are posteriorly produced and broadly rounded.
    [Show full text]
  • Evolutionary History of Inversions in the Direction of Architecture-Driven
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset.
    [Show full text]
  • Redalyc.Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae)
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Bunkley-Williams, Lucy; Williams, Jr., Ernest H.; Bashirullah, Abul K.M. Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Revista de Biología Tropical, vol. 54, núm. 3, diciembre, 2006, pp. 175-188 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44920193024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Lucy Bunkley-Williams,1 Ernest H. Williams, Jr.2 & Abul K.M. Bashirullah3 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, PR 00861, USA; [email protected] 2 Department of Marine Sciences, University of Puerto Rico, P.O. Box 908, Lajas, Puerto Rico 00667, USA; ewil- [email protected] 3 Instituto Oceanografico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. Author for Correspondence: LBW, address as above. Telephone: 1 (787) 832-4040 x 3900 or 265-3837 (Administrative Office), x 3936, 3937 (Research Labs), x 3929 (Office); Fax: 1-787-834-3673; [email protected] Received 01-VI-2006. Corrected 02-X-2006. Accepted 13-X-2006. Abstract: The parasitic isopod fauna of fishes in the southern Caribbean is poorly known. In examinations of 12 639 specimens of 187 species of Venezuelan fishes, the authors found 10 species in three families of isopods (Gnathiids, Gnathia spp.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • Deep-Sea Cymothoid Isopods (Crustacea: Isopoda: Cymothoidae) of Pacifi C Coast of Northern Honshu, Japan
    Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Japan, edited by T. Fujita, National Museum of Nature and Science Monographs, No. 39, pp. 467-481, 2009 Deep-sea Cymothoid Isopods (Crustacea: Isopoda: Cymothoidae) of Pacifi c Coast of Northern Honshu, Japan Takeo Yamauchi Toyama Institute of Health, 17̶1 Nakataikoyama, Imizu, Toyama, 939̶0363 Japan E-mail: [email protected] Abstract: During the project “Research on Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Ja- pan”, a small collection of cymothoid isopods was obtained at depths ranging from 150 to 908 m. Four species of cymothoid isopods including a new species are reported. Mothocya komatsui sp. nov. is distinguished from its congeners by the elongate body shape and the heavily twisting of the body. Three species, Ceratothoa oxyrrhynchaena Koelbel, 1878, Elthusa sacciger (Richardson, 1909), and Pleopodias diaphus Avdeev, 1975 were fully redescribed. Ceratothoa oxyrrhynchaena and E. sacciger were fi rstly collected from blackthroat seaperchs Doederleinia berycoides (Hilgendorf) and Kaup’s arrowtooth eels Synaphobranchus kaupii John- son, respectively. Key words: Ceratothoa oxyrrhynchaena, Elthusa sacciger, Mothocya, new host record, new species, Pleo- podias diaphus, redescription. Introduction Cymothoid isopods are ectoparasites of marine, fresh, and brackish water fi sh. In Japan, about 45 species of cymothoid isopods are known (Saito et al., 2000), but deep-sea species have not been well studied. This paper deals with a collection of cymothoid isopods from the project “Research on Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Japan” conducted by the National Museum of Nature and Science, Tokyo.
    [Show full text]
  • Elthusa Alvaradoensis N. Sp. (Isopoda, Cymothoidae) from the Gill Chamber of the Lizardfish, Synodus Foetens (Linnaeus, 1766)
    ELTHUSA ALVARADOENSIS N. SP. (ISOPODA, CYMOTHOIDAE) FROM THE GILL CHAMBER OF THE LIZARDFISH, SYNODUS FOETENS (LINNAEUS, 1766) BY ARTURO ROCHA-RAMÍREZ1,3), RAFAEL CHÁVEZ-LÓPEZ1,4) and NIEL L. BRUCE2,5) 1) Laboratorio de Ecología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Apartado Postal 314, Tlalnepantla, Estado de México 54090, Mexico 2) Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie, Wellington, New Zealand ABSTRACT Elthusa alvaradoensis n. sp. is described and figured. The species, a branchial parasite of the inshore lizardfish, Synodus foetens (Linnaeus, 1766), was collected on the coast of central Veracruz, Mexico. E. alvaradoensis is characterized by: the wide pleon and pleotelson being notably wider than the pereon, the relatively acute pleonite lateral margins, pleonite 1 as wide as pleonite 2 and pleotelson, short antennule and antenna (with 7 and 12-14 articles, respectively, in adult females and 4 and 7 in males), and the uropodal rami being subequal in length with subacute apices. The new species described here accords well with the generic characters of Elthusa, but pereopod 5-7 lack a carina. The distribution of the genus is here extended into the tropical western North Atlantic. RESUMEN Elthusa alvaradoensis n. sp. es descrita e ilustrada. La especie es un parásito branquial del “lagarto máximo”, Synodus foetens (Linnaeus, 1766), fue colectado en la costa central de Veracruz, México. E. alvaradoensis es caracterizada por: pleon y pleotelson notablemente más amplios que el pereon, márgenes laterales de los pleonitos relativamente agudos, pleonito 1 tan amplio como el pleonito 2 y el pleotelson, antenula mas corta que la antena (con 7 y 12-14 en hembras adultas y en machos 4 y 7, artículos respectivamente), rami del urópodo con los ápices subagudos y subiguales en longitud.
    [Show full text]
  • Trends and Gaps on Philippine Scombrid Research: a Bibliometric Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450467; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Trends and Gaps on Philippine Scombrid Research: A bibliometric analysis ┼ ┼ Jay-Ar L. Gadut1 , Custer C. Deocaris2,3 , and Malona V. Alinsug2,4* 1 Science Department, College of Natural Sciences and Mathematics, Mindanao State University- General Santos City 9500, Philippines 2Philippine Nuclear Research Institute, Department of Science and Technology, Commonwealth Avenue, Diliman, Quezon City, Philippines 3 Research and Development Management Office, Technological Institute of the Philippines, Cubao, Quezon City, Philippines 4 School of Graduate Studies, Mindanao State University-General Santos City 9500, Philippines ┼ These authors contributed equally to the paper. *Corresponding Author: [email protected] or [email protected] Agricultural Research Section, Philippine Nuclear Research Institute Department of Science and Technology, Commonwealth Avenue, Quezon City, Philippines 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450467; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Philippine scombrids have been among the top priorities in fisheries research due primarily to their economic value worldwide. Assessment of the number of studies under general themes (diversity, ecology, taxonomy and systematics, diseases and parasites, and conservation) provides essential information to evaluate trends and gaps of research.
    [Show full text]
  • Cymothoidae from Fishes of Kuwait (Arabian Gulf) (Crustacea: Isopoda)
    Cymothoidae from Fishes of Kuwait (Arabian Gulf) (Crustacea: Isopoda) THOMAS E. BOWMAN and INAM U. TAREEN SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 382 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropo/ogy Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Occurrence of Parasitic Isopods Norileca Indica on Some Carangid Fishes from the Upper Gulf of Thailand Abstract: This Study
    Occurrence of Parasitic Isopods Norileca indica on Some Carangid Fishes from the Upper Gulf of Thailand Jittikan Intamong1 and Smarn Kaewviyudth1 1Department of Zoology, Faculty of Science, Kasetsart University Corresponding author’s email: [email protected] Abstract: This study was to identify and describe parasitic isopod infestation on some carangid fishes collected from the upper gulf of Thailand. A total of 155 carangid fish specimens from 7 species, Alepes djedaba, Atule mate, Liza subviridis, Parastromateus niger, Selar crumenophthalmus, Selaroides leptolepis and Sillago sihama were collected from Chanthaburi and Trat provinces in November 2013 to February 2014. Only one species of isopod, Norileca indica, was found in the branchial cavity of S. crumenopthalmus. The prevalence and intensity of this species infestation were 31.7% and 2.4, respectively. Keywords: Parasitic Isopods, Norileca indica, Carangid Fishes, The upper gulf of Thailand Introduction More than 450 species of parasitic isopods are great problems in the culture and captive maintenance of marine fishes (Moller and Anders, 1986). Due to they can cause significant economic losses to fisheries by killing, stunting, or damaging these fishes (Papapanagiotou et al., 2001, Ravichandran et al., 2010, Rameshkumar et al., 2011). Isopods of the genus Norileca (Isopod: Cymothoidae), consist of three species; N. borealis (Javed and Yasmeen), 1999, N. indica (Milne Edwards, 1840) and N. triangulata (Richardson, 1910) that found in marine, estuarine and freshwater. They are ectoparasites habit in the mouth, branchial cavity, fins of fishes, they fed on blood and macerated tissues that several species (Hoffman, 1998; Trilles and Bariche, 2006). Most of N. indica infected the branchial cavities of the pelagic fishes such as Alepes apercna, Atule malam, S.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Cymothoidae) from Sub-Sahara Africa
    Biodiversity and systematics of branchial cavity inhabiting fish parasitic isopods (Cymothoidae) from sub-Sahara Africa S van der Wal orcid.org/0000-0002-7416-8777 Previous qualification (not compulsory) Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Sciences at the North-West University Supervisor: Prof NJ Smit Co-supervisor: Dr KA Malherbe Graduation May 2018 23394536 TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................... VI LIST OF TABLES .................................................................................................................. XIII ABBREVIATIONS .................................................................................................................. XIV ACKNOWLEDGEMENTS ....................................................................................................... XV ABSTRACT ........................................................................................................................... XVI CHAPTER 1: INTRODUCTION ................................................................................................. 1 1.1 Subphylum Crustacea Brünnich, 1772 ............................................................ 2 1.2 Order Isopoda Latreille, 1817 ........................................................................... 2 1.3 Parasitic Isopoda .............................................................................................
    [Show full text]
  • Crustacea: Isopoda: Cymothoidae
    Zoological Studies 57: 25 (2018) doi:10.6620/ZS.2018.57-25 Open Access Agarna malayi Tiwari 1952 (Crustacea: Isopoda: Cymothoidae) Parasitising the Marine Fish, Tenualosa toli (Clupeidae) from India: Re-description/description of Parasite Life Cycle and Patterns of Occurrence Panakkool Thamban Aneesh1,2, Kappalli Sudha4,*, Ameri Kottarathil Helna3, and Gopinathan Anilkumar5 1Zoological Survey of India (ZSI), Ministry of Environment Forest & Climate Change, Govt. of India, Kolkata-700 053, West Bengal, India. E-mail: [email protected] 2Department of Aquatic Biology & Fisheries, University of Kerala, Kariavattam, Kerala, India 3Post Graduate Department of Zoology and Research Centre, Sree Narayana College, Kannur-670 007, India. E-mail: [email protected] 4Department of Animal Science, School of Biological Sciences, Central University of Kerala, Kasaragod-671316, India 5School of Biosciences and Technology, VIT University, Vellore 632014, India. E-mail: [email protected] (Received 7 December 2017; Accepted 19 April 2018; Published 7 June 2018; Communicated by Benny K.K. Chan) Citation: Aneesh PT, Sudha K, Helna AK, Anilkumar G. 2018. Agarna malayi Tiwari 1952 (Crustacea: Isopoda: Cymothoidae) parasitising the marine fish, Tenualosa toli (Clupeidae) from India: re-description/description of parasite life cycle and patterns of occurrence. Zool Stud 57:25. doi:10.6620/ZS.2018.57-25. Panakkool Thamban Aneesh, Kappalli Sudha, Ameri Kottarathil Helna, and Gopinathan Anilkumar (2018) This paper re-describes the female stage of Agarna malayi Tiwari 1952, a protandrically hermaphroditic parasitic cymothoid, and describes the remaining life cycle stages for the first time. The re-description (female phase) of A. malayi was made based on the type specimens deposited by Tiwari (1952) in the National Zoological Collections of the Zoological Survey of India (NZC-ZSI) and data obtained from several live specimens collected from Ayyikkara Fish Landing Centre (11°51'N, 75°22'E, of Malabar Coast, India) and Marina Beach (13.0500°N, 80.2824°E, Bay of Bengal, India).
    [Show full text]