Coma Deep Tendon Reflexes Definition

Total Page:16

File Type:pdf, Size:1020Kb

Coma Deep Tendon Reflexes Definition Coma deep tendon reflexes definition Continue The FriendlyCheck printer deep tendon reflexes using pulses from a reflex hammer to stretch muscles and tendons. The limbs should be in a relaxed and symmetrical position, as these factors can affect the reflex amplitude. As in muscle strength testing, it is important to compare each reflex at once with its contralateral counterpart, so that any asymmetry can be detected. If you can't trigger a reflex, you can sometimes deduce it with certain reinforcement procedures. For example, having a patient gently contract muscles are tested by raising the limb very slightly, or their focus on forcibly contracting another muscle group just at the moment when the reflex is being tested. When the reflexes are very lively, the clone is sometimes seen. It is a repetitive vibrational muscle contraction that occurs in response to the muscles and tendon stretch. Deep tendon reflexes are often evaluated according to the following scale: 0: missing reflex 1 : trace, or seen only with reinforcement 2 : normal 3: lively 4 : invulnerable clone (i.e. repetitive vibrational movements) 5 : a steady clone of deep tendon reflexes are normal if they are 1, 2 or 3, if they are not asymistic or there is a sharp difference between the hands and feet. Reflexes rated as 0, 4 or 5 are generally considered abnormal. In addition to the clonus, other signs of hyperreflexion include the spread of reflexes to other muscles not directly tested and crossed the adduction of the opposite leg when the medial aspect of the knee is tapped. 58. Deep Tendon Reflexes Your browser does not support h.264 videos. The sequence of Deep Tendon Reflexes (see Neuroanatomy through Clinical Cases, Figure 2.21) can be reduced by abnormalities in muscles, sensory neurons, lower motor neurons, and neuromuscular communication; acute lesions of the upper motor neurons; and mechanical factors such as joint diseases. Abnormally elevated reflexes are associated with lesions of upper motor neurons. Note that deep tendon reflexes may depend on age, metabolic factors such as thyroid dysfunction or electrolyte abnormalities, and the patient's anxiety level. The main roots of the spinal nerve involved in the testing of deep tendon reflexes are summed up in the following table: Reflex Major spinal nerve roots involved Biceps C5, C6 Brachioradialis C6 Triceps C7 Patellar L4 Achilles TendonD S1 Reflexes in The ailments of The Tendon Reflex (or T-reflex) can relate to: stretch reflex when a stretch is created by a muscle. This is the usual definition of the term. A common example is a standard patellar reflex or knee-jerk reaction. Reflex tests are used to determine the integrity of the spinal cord and peripheral nervous system, which can be used to determine the presence of neuromuscular disease. Note that the term deep tendon reflex (DTR) as it refers to the muscular stretch stretch (MSR), is wrong. Tendons have little to do with the answer, other than to be responsible for mechanically transmitting a sudden stretch from a reflex hammer to a muscular spindle. In addition, some muscles with stretch marks reflexes do not have tendons (such as jaw jerk muscle masseur). Golga tendon reflex, which is a reflex to extensive tension on the tendon; It functions to protect the musculoskeletal brain integrity. The sensory receptors of this reflex are anatomically located deep in the tendon. This while the sensory receptors for MSR are actually inside the proper muscle. So it's actually Golga's tendon reflex that can be called DTR rather than MSR. Testing To test the reflex, click on the tendon. In a healthy person, the intensity on both sides is equal. This means that the connections between the spinal cord and muscles are intact. Major spinal nerve roots involved: Biceps (C5, C6) Brachioradialis (C6) Triceps (C7) Patellar (L4) Achilles Tendon (S1) Features Golgi Tendon Reflex Reflex Golga Tendon is a response to extensive tension on the tendon. This helps to avoid strong muscle contractions that can tear the tendon away from the muscles or bones. In sports, rapid movements can damage the tendon before a reflex can occur. The tendon reflex also helps to distribute the workload more evenly throughout the muscle, preventing muscle fibers associated with overly formulated tendon organs, so that their contraction is more comparable to contracting the rest of the muscle. References to theFreeDictionary's Tendon Referring: Dorland Medical Dictionary for Consumers Health. 2007 dictionary.com's Tendon Reflex Linking: Merriam-Webster Medical Dictionary, 2007 and American Heritage Stedman Medical Dictionary 2002 - wustl.edu's tendon reflex Linking: wustl.edu. REFLEXORS: Tendon and others. 2008. - eNotes zgt; tendons With reference: Encyclopedia of Nursing and Allied Health. 2002 - Physical diagnostics based on evidence; McGee; Chapter 63. 2018 - Batavia, Mitchell; McDonough, Andrew L. (2000). Demonstration of the stretching reflex: mechanical model. American biology teacher. 62 (7): 503–7. doi:10.1662/0002- 7685(2000)062-0503:DTSRAM-2.0.CO;2. JSTOR 4450958. b c d Saladin, Kenneth S. Anatomy and Physiology: Unity of Form and Function. Dubuque: McGraw Hill, 2012. Print. (page needed) External references to Tondo Reflex on Dorland Medical Reflex Dictionary, Tendon at the U.S. National Library of Medicine Medical Items headlines (MeSH) by Kenneth Walker, H (1990). Tendon's deep reflexes. In Kenneth Walker, H; Dallas Hall, W; Willis Hurst, J (eds.). Clinical Methods: History, Physical and Laboratory Studies (3rd Boston: Butterworths. ISBN 0-409-90077-X. PMID 21250237. Extracted from Also found in: Thesaurus, Acronyms, Encyclopedia.Related to deep tendon reflex: the Babinski sign, a superficial tension tonic muscle contraction in response to a strength sprain, due to the stimulation of muscle proprioceptors. Farlex Partner Medical Dictionary © Farlex 2012n. Tonic muscle contraction in response to strength stretching, through stimulation of muscle proprioceptors. American Heritage® Copyright Dictionary © 2007, 2004 Houghton Mifflin Company. Published by Houghton Mifflin Company. All rights are reserved. (m'o-tact'tick ryoflex) Medical Dictionary for Medical Professions and Care © Farlex 2012 Want to thank TFD for its existence? Tell a friend about us, add a link to this page, or visit the Webmasters page for free fun content. Link to this page: deep tendon reflex He was treated with intravenous dextrose and sodium bicarbonate and was continued on carnitine and vitamin B12 injections. Subsequently, Cook et al (6) reviewed the reliability and sensitivity of 7 clinical trials: Babinski's mark, clone, Hoffman sign, inverted supinator sign, hand output reflex, quadriceps nadpatellar reflex, and upper limb reflexes of the deep tendon. Two experienced clinicians demonstrated a significant inter-painter agreement on 4 of 7 tests. The latest information on COVID-19 Reflexes is useful for a general therapist to perform, but you can't evaluate them if... You don't have a hammer. You are not using the correct technique, in which case the reflex seems to be missing when it is present. If you don't know what deviations to expect and what they mean. Root level of bicep and Brachioradialis C5/C6 Triceps C7 (Note: Some links include C6 OR C8, however C7 is mostly involved.) Patellar L2-L4 Ankle S1 Surface Reflexes Cornel (blinking reflex) Involuntary blinking in response to corneal stimulation Afferent: nasosilar branch of the ophthalmic branch (V1) trigeminal nerve (5th nerve) Efferent: facial nerve (7th nerve) Abdominal reflex The slightly significant Cremaster reflex compression cremaster muscle (which will pull up the scrotum/testicle) after stroking the same side of the superior/inner thigh Missing with: testicular xersion upper/lower motor neuron lesions L1/L2 spinal cord injury ilioinguinal nerve injury (during hernia repair) Reflexes Reflex (anal wink) Reflexive reduction of the external sphincter when stroking the skin around the anus (afferent: pudental nerve; Efferent: S2- S4) Bulbocavernosus reflex sphincter contraction in response to contraction of the head of the penis or tugging on the indwelling Foley catheter Reflex mediated by S2-4 and used in patients with spinal cord injury DTR scale We are not a big believer in classifying reflexes (assessment of muscle strength is much more useful). However, if you need something beyond missing, present, fast, or hyperactive, then use below. If you have a hyperactive reflex, be sure to look for a clone. 0: Missing Reflex 1 : Trail, or seen only with reinforcement 2: normal 3 : lively 4: non-sustainable clone 5 : steady clonus Two articles on the history of the reflex hammer: The story of the reflex Hammers Douglas J. Lanska, 1989 Short Story reflex Francisco Pinto, 2003 On this page Reflexes are the most objective part of hammer neurological examination, and they are very useful in helping to establish the level of damage to the nervous system. First, we will discuss the various reflexes used in clinical practice and conclude the chapter by discussing the significance of the results. In some situations, reflexes may be a major part of the examination (e.g. comatose patient). They have a value that requires minimal cooperation on the part of the patient and preparation of a response that can be objectively evaluated by an expert. The list of all possible reflexes will be almost endless and a tangle of eponymic jargon for those with historical bent. You need to know the most common reflexes, and this knowledge is not very difficult to acquire. However, the interpretation of the reflex response requires some discussion. Table 8-1 is a list of many reflexes, some of them in general clinical use (and some less common). As a group, these reflexes can help in assessing most segmental levels of the nervous system from the hemisphere of the brain through the spinal cord. In this chapter, we will discuss the assessment of the usually tested reflexes of the spinal cord.
Recommended publications
  • Focusing on the Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries
    33 Focusing on The Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries Resiliency Through Reconnections - Reflex Integration Following Brain Injury Alex Andrich, OD, FCOVD Scottsdale, Arizona Patti Andrich, MA, OTR/L, COVT, CINPP September 19, 2019 Alex Andrich, OD, FCOVD Patti Andrich, MA, OTR/L, COVT, CINPP © 2019 Sensory Focus No Pictures or Videos of Patients The contents of this presentation are the property of Sensory Focus / The VISION Development Team and may not be reproduced or shared in any format without express written permission. Disclosure: BINOVI The patients shown today have given us permission to use their pictures and videos for educational purposes only. They would not want their images/videos distributed or shared. We are not receiving any financial compensation for mentioning any other device, equipment, or services that are mentioned during this presentation. Objectives – Advanced Course Objectives Detail what primitive reflexes (PR) are Learn how to effectively screen for the presence of PRs Why they re-emerge following a brain injury Learn how to reintegrate these reflexes to improve patient How they affect sensory-motor integration outcomes How integration techniques can be used in the treatment Current research regarding PR integration and brain of brain injuries injuries will be highlighted Cases will be presented Pioneers to Present Day Leaders Getting Back to Life After Brain Injury (BI) Descartes (1596-1650) What is Vision? Neuro-Optometric Testing Vision writes spatial equations
    [Show full text]
  • The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive
    Hindawi Publishing Corporation International Journal of Pediatrics Volume 2012, Article ID 191562, 10 pages doi:10.1155/2012/191562 Review Article The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive Reflex Responses Yasuyuki Futagi, Yasuhisa Toribe, and Yasuhiro Suzuki Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan Correspondence should be addressed to Yasuyuki Futagi, [email protected] Received 27 October 2011; Accepted 30 March 2012 Academic Editor: Sheffali Gulati Copyright © 2012 Yasuyuki Futagi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The plantar grasp reflex is of great clinical significance, especially in terms of the detection of spasticity. The palmar grasp reflex also has diagnostic significance. This grasp reflex of the hands and feet is mediated by a spinal reflex mechanism, which appears to be under the regulatory control of nonprimary motor areas through the spinal interneurons. This reflex in human infants can be regarded as a rudiment of phylogenetic function. The absence of the Moro reflex during the neonatal period and early infancy is highly diagnostic, indicating a variety of compromised conditions. The center of the reflex is probably in the lower region of the pons to the medulla. The phylogenetic meaning of the reflex remains unclear. However, the hierarchical interrelation among these primitive reflexes seems to be essential for the arboreal life of monkey newborns, and the possible role of the Moro reflex in these newborns was discussed in relation to the interrelationship.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • Neurologic AESI Glossary of Terms
    Neurologic AESI Glossary of Terms Includes terms for the following Brighton Collaboration Case Definitions: • Encephalitis, myelitis, acute disseminated encephalomyelitis • Guillain Barré and Miller Fisher Syndromes • Peripheral Facial Nerve Palsy (Bell’s palsy) • Aseptic meningitis • Generalized convulsion Acalculia: inability to perform simple mathematical tasks (addition, subtraction, multiplication) Agnosia: inability to recognize objects or persons Agraphesthesia: difficulty recognizing a written number or letter traced on the palm of the hand Agraphia: impairment in the ability to write AIDP: acute inflammatory demyelinating polyneuropathy (most common form of GBS) Alexia: impairment of ability to read AMAN: acute motor axonal neuropathy (a less common form of GBS) AMSAN: acute motor and sensory axonal neuropathy (a less common form of GBS) Aphasia / Dysphasia: impairment of spoken language abilities that affect production and/or comprehension of speech. Apraxia: inability to execute purposeful movements Aprosodia: decreased ability to generate or comprehend emotion as conveyed in spoken language Asterognosia: inability to identify an object by active touch of the hands without other sensory input (e.g. visual) Ataxia: loss of coordination in voluntary movements; can present in many ways including: lack of coordination, slurred speech, gait abnormalities, inability to balance, trouble eating and swallowing, loss of fine motor skills, tremors; Atonic motor manifestations: sudden loss in tone of postural muscles; may be preceded by
    [Show full text]
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
    [Show full text]
  • Physiology and Pathophysiology 2018/2019 Dental Medicine Examination Synopsis in Physiology
    Medical University of Varna Department of Physiology and Pathophysiology 2018/2019 Dental medicine Examination Synopsis in Physiology Theoretical exam 1. Homeostasis. Control systems of the body – characteristics. Negative feedback mechanism. 2. Cell membranes. Transport of substances through cell membranes. 3. Membrane potential. Resting membrane potential of nerves. 4. Nerve action potential. Propagation of the action potential. Conduction velocity. 5. Signal transmission in nerve fibers. Excitation - the process of eliciting the action potential. Threshold for excitation, refractory period. Inhibition of excitability. 6. Organization and functions of the nervous system. Types of synapses. Electrical synapses. 7. Characteristics of transmission in chemical synapses. 8. Synaptic transmitters. Membrane receptors. 9. Generation of postsynaptic potentials. Generation of action potentials in the axon. Neuronal inhibition - types. Neuroglia. 10. Characteristics of postsynaptic potentials. Spatial and temporal summation in neurons. "Facilitation" of neurons. Characteristics of synaptic transmission. 10. Transmission and processing of signals in neuronal circuits. Convergence, divergence, reverberating circuits. Reflexes - types. 11. Organization of the autonomic nervous system. Location of autonomic ganglia. Characteristics of sympathetic and parasympathetic function - transmitters. 12. Characteristics of sympathetic and parasympathetic function - receptors. 13. Sympathetic or parasympathetic tone. Denervation effects. Autonomic reflexes.
    [Show full text]
  • Neuropsychiatry Block Stretch Reflex and Golgi Tendon Reflex
    NeuroPsychiatry Block Stretch reflex and Golgi Tendon Reflex By Prof. Faten zakareia Physiology Department , College of Medicine , King Saud University 2017 Email: [email protected] Ext:52736 NeuroPsychiatryBlock Motor Functions of the Spinal Cord, The cord Reflexes Chapter 55 (Guyton & Hall) -Reference book/Ganong review of medical physiology • Objectives: Upon completion of this lecture, students are expected to : - Describe the stretch reflex and ts icomponents - Describe the structure and function of the muscle spindle - Differentiate between primary and secondary afferent fibres of muscle spindle, Intrafusal nuclear bag &nuclear chain fibers - Differentiate between the Dynamic gamma efferent and Trail endings discharge and their functional role - Differentiate between static and dynamic stretch reflex& damping mechanism - Describe muscle tone and its abnormalities - Disscuss spinal and supraspinal regulation of the stretch reflex - Describe the components of the inverse stretch reflex (golgi tendon reflex)and its function THE STRETCH REFLEX REFLEX STRETCH (MYOTACTIC) REFLEX https://musom.marshall.edu/anatomy/grosshom/allppt/pdf/Spinalreflexes.pdf CLINICAL TEST | RAPID STRETCH OF MUSCLE (TAP ON MUSCLE TENDON) STIMULUS RESPONSE STRETCHED MUSCLE CONTRACT RAPIDLY (I.E. KNEE JERK) SENSORY MUSCLE SPINDLE PRIMARY RECEPTOR SYNAPSES MONOSYNAPTIC INVOLVED EFFECTS ON CONTRACTS (+) SAME MUSCLE AND SYNERGISTIC MUSCLES MUSCLE OTHER EFFECTS RELAXES (-) ANTAGONISTIC MUSCLE FUNCTION AIDS IN MAINTAINING POSTURE, AVOID MUSCLE RUPTURE,COUNTERS SUDDEN
    [Show full text]
  • Development of the Flexion Withdrawal Reflex
    Spinal sensory processing in the human infant: Development of the flexion withdrawal reflex Laura Louise Cornelissen Thesis submitted for the degree of Doctor of Philosophy University College London 2011 1 Declaration The work in this thesis was conducted in the Department of Neuroscience, Physiology and Pharmacology at University College London, and in the Elizabeth Anderson and Obstetrics Wing at University College Hospital. I, Laura Louise Cornelissen, confirm that the work presented in this thesis is my own. Where other information has been derived from other sources, I confirm that this has been indicated in the thesis. Laura Louise Cornelissen March 2011 2 Abstract Immature spinal sensory reflexes have lower mechanical thresholds and are poorly coordinated and exaggerated compared to adult reflexes. However, little quantitative data is available on how these spinal sensory circuits develop in the human infant. This thesis investigates the development of cutaneous flexion withdrawal reflexes in preterm and full- term human infants following noxious and non-noxious stimulation of the heel, and tests whether flexion withdrawal reflex activity is modulated by the commonly administered analgesic, oral sucrose, in a randomised controlled trial. The studies were undertaken in infants aged 28-45 weeks gestation (GA), in-patients at University College Hospital, London. The noxious stimulus was a clinically required heel lance; non-noxious stimulation was either a light touch of the heel or application of calibrated von Frey hairs to the heel. Flexion withdrawal reflex activity was recorded with surface EMG electrodes placed over the biceps femoris muscle. Video recordings of facial expression were recorded for clinical pain assessment.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • The Phenomenon of Multiple Stretch Reflexes
    Henry Ford Hospital Medical Journal Volume 34 Number 1 Article 6 3-1986 The Phenomenon of Multiple Stretch Reflexes Robert D. Teasdall Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Teasdall, Robert D. (1986) "The Phenomenon of Multiple Stretch Reflexes," Henry Ford Hospital Medical Journal : Vol. 34 : No. 1 , 31-36. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol34/iss1/6 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. The Phenomenon of Multiple Stretch Reflexes Robert D. Teasdall, MD* Multiple stretch reflexes occur in muscles adjacent to or remote from the tap. The response may be ipsilateral or bilateral. These reflexes are encountered not only in normal subjects with brisk stretch reflexes but particularly in patients with lesions of the upper motor neuron. The concussion obtained by the blow is conducted along bone to muscle. Muscle spindles are stimulated, and in this manner independent stretch reflexes are produced in these muscles. This mechanism is responsible for the phenomenon of multiple stretch reflexes. The thorax and pelvis play important roles in the contralateral responses by transmitting these mechanical events across the midline. (Henry FordHosp Med J 1986;34:31-6) ontraction of muscles remote from the site of f)ercussion is Head and neck Cencountered in patients with brisk stretch reflexes.
    [Show full text]
  • Spinal Reflexes Marte Rydland a Reflex Is a Protective Response to Stimulus That Does Not Require Conciousness Reflexes
    Spinal reflexes Marte Rydland A reflex is a protective response to stimulus that does not require conciousness Reflexes Elements of a reflex arc: 1. Receptor 2. Afferent pathway 3. Integration center 4. Efferent pathway 5. Effector Types of reflexes 1. Stretch reflex → Protects from overstretching 2. Golgi tendon reflex → Protects from over contracting 3. Withdrawal reflex → Protects from potentially harmful stimuli Muscle fibers Types of muscle fibers Extrafusal fibers Intrafusal fibers ▪ Outer layer ▪ Encapsulated in sheaths to form ▪ Provide the force for muscle muscle spindle contraction ▪ Innervated by ɣ-motoneurons ▪ Most of skeletal muscle ▪ Smaller than extrafusal fibers ▪ Innervated by ⍺-motoneurons ▪ Too small to generate force ▪ Attach to tendons ▪ Sensory receptors: Detect the stretch of a muscle Intrafusal fibers – Muscle spindle Nuclear bag fibers Nuclear chain fibers • Have nuclei collected in a "bag" • Have nuclei arranged in series region • Are more numerous than nuclear • Onset of stretch bag fibers • Dynamic changes = LENTGH & • Sustained stretch VELOCITY • Static changes = LENGTH • Annulospiraling endings • Flower spray endings • Innervated by group Ia afferents • Innervated by group Ia + II SLOW afferents RAPID RAPID Renshaw inhibition • Inhibitory interneurons • Between LMN/AMN’s • Negative feedback loop • Removes “noise” • Prevents hyperactive muscle contraction How to move a limb? • Antagonizing muscles must do the opposite • Flexors vs. extensors • Reciprocal innervation • Inhibiting interneurons 1. Stretch reflex (myotatic reflex) Stimulus: stretching of the muscle 1. Intrafusal fiber 2. Type Ia sensory fiber (afferent nerve) 3. Monosynaptic 4. α motor neurons (efferent nerve) 5. Extrafusal muscle fibers = Agonist muscle contracts = Antagonist relaxes Knee jerk reflex 2. Golgi tendon reflex (inverse stretch) Stimulus: contraction of the muscle 1.
    [Show full text]
  • Understanding the Impact of Retained Reflexes on Relationships and Development a Guide for the Infant Mental Health Practitioner
    Understanding the Impact of Retained Reflexes on Relationships and Development A Guide for the Infant Mental Health Practitioner Pamela Crljenica, LMSW, IMH-E® (III) Ledges Wellness LLC [email protected] Michigan State University School of Social Work Faculty Workshop Description The field of Infant Mental Health has long understood the critical importance of the infant- parent relationship to all learning and development. But, what if something is interfering with that relationship that the field has yet to recognize? What does it mean for development if a child's or parent’s primitive reflexes, specifically Fear Paralysis and Moro, are still retained? And, how does this impact their ability to build a successful relationship? In this workshop, learn how to identify if these reflexes are retained and impacting attachment, and what you as an Infant Mental Health practitioner can do about it. Objectives Identify specific symptoms of inappropriately active (i.e., retained) Fear Paralysis and Moro reflexes. Learn and apply several relationship- based strategies that encourage integration of the Fear Paralysis and Moro reflexes. What are Primitive Reflexes? Can also be known as primary, infant, or newborn reflexes Innate movement patterns that emerge in- utero Originate in the brainstem or spinal cord Activated through the birthing process (cardinal movements) A predetermined patterned movement response triggered by a sensory stimulation Happens automatically without conscious effort or will What do Primitive Reflexes do? Start a developmental process in the brain and central nervous system Help babies during the birth process and orient them to their new environment after birth Prepares newborn to move against gravity and teaches muscles to move together Gradually lead to voluntary movement (i.e., transforms into adult postural and defensive reflexes) Simply put… Primitive reflexes are the blueprint for movement.
    [Show full text]