Isoprene Emission in Polytrichaceae Mosses

Total Page:16

File Type:pdf, Size:1020Kb

Isoprene Emission in Polytrichaceae Mosses Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 5-24-2019 Isoprene Emission in Polytrichaceae Mosses Timea Deakova Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Deakova, Timea, "Isoprene Emission in Polytrichaceae Mosses" (2019). Dissertations and Theses. Paper 4984. https://doi.org/10.15760/etd.6860 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Isoprene Emission in Polytrichaceae Mosses by Timea Deakova A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Dissertation Committee: Sarah Eppley, Chair Todd Rosenstiel, Co-Chair Daniel Ballhorn Andrew Rice Erin Shortlidge Portland State University 2019 © 2019 Timea Deakova Abstract Our first aim was to identify and quantify Biological Volatile Organic Compound (BVOC) emissions, specifically emissions of isoprene, from the moss Polytrichum juniperinum during its earliest stage of life. Isoprene emission from mosses could be a significant component of the total global budget of BVOC emissions. Data concerning the spatial and temporal variability of these emissions are lacking due to poor characterization of the physical and biological factors controlling isoprene synthesis in both vascular and non-vascular plants. We found that P. juniperinum in its early life stage (protonema) can emit isoprene at detectable levels at day five after spore germination. These results suggest that protonema is capable of isoprene emission, shown here for the first time, and media affects emission rates. We saw a negative trend with leaf emergence and protonema growth. Chlorophyll fluorescence ratio had a positive correlation with isoprene emission, and isoprene emission was both temperature and light dependent in early protonema. Our second aim was to determine the effects of sex and sexual expression on isoprene emission in mosses. Sex is a biologically costly, but it can result in genetic adaptability and variety for resulting offspring. Using three Polytrichaceae species, we measured isoprene emission between plants sexually expressing and non-expressing and between male and female moss plants. We found that non-sexually expressing gametophytes had significantly higher isoprene emission than gametophytes expressing sex, suggesting that sex expression may be costly and that additional resources are i allocated to isoprene emission when plants are not reproducing. Males emitted higher levels of isoprene than females, but surprisingly this difference occurred only when plants were not expressing sex. We found species and sex-specific differences in chlorophyll fluorescence ratio (CFR) and relative electron transport rate (RETR). Our third aim was to investigate and categorize the effect of nitrogen addition on isoprene emission of P. juniperinum by creating an artificial nitrogen gradient with ammonium nitrate addition (NH4NO3). Current rates of anthropogenic N deposition are altering many biogeochemical processes. In these changing environments, increased nitrogen availability alters plant phenology, physiology, and the allocation of resources, but no information is available on whether additional N increases isoprene emissions in mosses. We used a manipulative experiment to measure the effects of nitrogen addition on moss isoprene emission, as well as on moss morphology and reproductive effort. We found site-specific differences in our morphological and physiological measurements. Isoprene emission was site, sex, and N addition specific, with the highest isoprene emission seen from our mid-level N addition, in both female- and male-majority pots. We found significant treatment and sex-specific interactions among our sites and within sites. We saw the highest reproductive effort counts from non-sexual expressive gametophytes, followed by high sporophyte count from female-majority pots. We also saw chlorophyll fluorescence ratio (CFR) differences between sites and treatments, but not between sexes. ii Acknowledgements I am extremely grateful for the advice, assistance, and encouragement I received from all my friends and colleagues during my graduate work. I was able to accomplish far more than I could have on my own. Undertaking this PhD has been a great life experience for me, and it would have been impossible to accomplish without the support and advice I received from many people. I would like first to thank my supervisor Dr. Sarah Eppley for her patience, mentorship for lending an ear to the many concerns and for the support, she provided me during this period. Her understanding and positive attitude was an important motivation for me to pursue my doctoral degree and I feel very fortunate to have had the opportunity to work with her support. I am also thankful to Dr. Rosenstiel; he introduced me to the wonderful world of mosses and gave me the opportunity to join his lab to explore them. I am grateful that he provided the insight I needed to explore isoprene emission in mosses. I also extend my thanks to my committee members, who have helped me reach the completion of this stage in my journey through academia with support and advice. Special thanks also to my friends and fellow lab mates and collaborators especially for their advice and friendship and support inside and outside the lab. They created a pleasant working environment that kept me motivated during my PhD while lending an ear to the inevitable gripes about the difficulties always experienced in the search for knowledge. I am especially thankful for Scott Kiel and his expertise in showing me the ropes in running the reduced gas analyzer. Thank you for sharing a passion of science with me. Thank you Scott! iii I would like to say heartfelt thanks to my family especially my children Annika and Mika, who have understood the long hours I have been working during their young lives. I am very thankful for my mother-in-law supported me taking care of my children when I was attending school. I would also like to thank my mother who has both supported me financially and emotionally through having children and going to school. I would like to thank my husband who was the first to show me how exciting science really is, how beautiful and elegant it can be, for sharing his sense of wonder at discovery a feeling that inspired hope, a hope that allowed me to summon my own strength to see this through. He was the first to believe in me, the first to recognize my abilities. I am thankful for his endless support in achieving my academic goals in his unflagging ability to convince me that all of this was possible even when I was not sure it was. Thank you, Doug, for your vision, energy, enthusiasm support in all the steps of my PhD. This work was funded by the National Science Foundation (NSF GRFP) Biological Science Grant 2015. Proposal Title: Moss Volatile Emissions: The role of BVOC in non-flowering sexual systems. I am extremely grateful to be awarded the NSF GRFP fund and without this award I would not have been able to complete my work. I want to thank additional funding from Sigma Xi, the American Association for the Advancement of Science Pacific Division. Lastly, I would also like to thank the Forbes- Lea research award and the Botanical Society Award that helped me get started on my initial data collection. iv Table of Contents Abstract ................................................................................................................................ i Acknowledgements ............................................................................................................ iii List of Tables ..................................................................................................................... vi List of Figures ................................................................................................................... vii Chapter 1 Introduction ..........................................................................................................................1 Chapter 2 Isoprene emission from Polytrichum juniperinum protonema. ...........................................9 Chapter 3 The role of isoprene in Polytrichaceae sexual systems .....................................................58 Chapter 4 The effect of nitrogen addition on moss morphology, sexual reproduction, and isoprene production. .................................................................................................127 Chapter 5 Conclusion .......................................................................................................................188 References ........................................................................................................................199 v List of Tables Table 2.1 Summary table of Polytrichum juniperinum populations used for protonema single spore and mixed spore experiments. .....................................................42 Table 3.1 Summary table of P. juniperinum populations used for non-sexually expressing isoprene emission (n=45). ..............................................................................100 Table 3.2 Summary table of P. juniperinum populations used for sexually
Recommended publications
  • New Data on the Moss Genus Hymenoloma (Bryophyta), with Special Reference to H
    Cryptogamie, Bryologie, 2013, 34 (1): 1-18 © 2013 Adac. Tous droits réservés New data on the moss genus Hymenoloma (Bryophyta), with special reference to H. mulahaceni Olaf WERNER a, Susana RAMS b, Jan KUČERA c, Juan LARRAÍN d, Olga M. AFONINA e, Sergio PISA a & Rosa María ROS a* aDepartamento de Biología Vegetal (Botánica), Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain bEscuela Universitaria de Magisterio “La Inmaculada”, Universidad de Granada, Carretera de Murcia s/n, 18010 Granada, Spain cUniversity of South Bohemia, Faculty of Science, Branišovská 31, CZ - 370 05 České Budějovice, Czech Republic dUniversidad de Concepción, Departamento de Botánica, Casilla 160-C, Concepción, Chile eKomarov Botanical Institute of Russian Academy of Sciences, Professor Popov Str. 2, St.-Petersburg 197376, Russia Abstract – A molecular and morphological study using two chloroplast molecular markers (rps4 and trnL-F) was carried out with specimens belonging to Hymenoloma mulahaceni, a species described at the end of the 19th century from the Sierra Nevada Mountains in southern Spain as a member of Oreoweisia. The comparison with Asian, European, and North American material of Dicranoweisia intermedia proved the conspecifity of both taxa, which was corroborated by molecular data. Therefore, the distribution area of H. mulahaceni is extended to U.S.A., Canada, Greenland, and several Asian countries (Armenia, Georgia, Tajikistan, and Uzbekistan). We also tested the monophyly of Hymenoloma sensu Ochyra et al. (2003), by including in the analysis the Holarctic taxa assigned to the genus together with Chilean material identified as H. antarcticum (putatively synonymous with the type of Hymenoloma) and H.
    [Show full text]
  • Translocation and Transport
    Glime, J. M. 2017. Nutrient Relations: Translocation and Transport. Chapt. 8-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 8-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 8-5 NUTRIENT RELATIONS: TRANSLOCATION AND TRANSPORT TABLE OF CONTENTS Translocation and Transport ................................................................................................................................ 8-5-2 Movement from Older to Younger Tissues .................................................................................................. 8-5-6 Directional Differences ................................................................................................................................ 8-5-8 Species Differences ...................................................................................................................................... 8-5-8 Mechanisms of Transport .................................................................................................................................... 8-5-9 Source to Sink? ............................................................................................................................................ 8-5-9 Enrichment Effects ..................................................................................................................................... 8-5-10 Internal Transport
    [Show full text]
  • Lehman Caves Management Plan
    National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0.
    [Show full text]
  • The Ecology of the in the North York Moors National Park
    The ecology of the invasive moss Campylopus introflexus in the North York Moors National Park by Miguel Eduardo Equihua Zamora A thesis presented for the degree of Doctor of Philosophy in the Department of Biology at the University of York November 1991 I hereby declare that the work presented in this thesis is the result of my own investigation and has not been accepted in previous applications for the award of a degree. Exceptions to this declaration are part of the field data used in chapter 4, which was collected and made available to me by Dr. M.B. Usher. The distribution map on Campylopus introflexus was provided by P.T. Harding (Biological Records Centre, ITE, Monks Wood). R.C. Palmer (Soil Survey and Land Research Centre, University of York) made available to me the soil and climatological data of the area, and helped me to obtain the corresponding interpolation values for the sampled sites. Miguel Eduardo Equihua Zamora 1 CONTENTS page Acknowledgements . 4 Abstract................................................. 5 1. Introduction 1.1 The invader: Campylopus introflexus ..................... 7 The invasion of the Northern Hemisphere ............... 7 Taxonomyand identity ............................ 13 Ecology....................................... 16 1.2 The problem ...................................... 19 1.3 Hypothetical mechanisms of interaction ................... 22 2. Aims of the research ......................................28 3. Description of the study area .................................29 4.Ecological preferences of Campylopus introflexus in the North York Moors National Park 4.1 Introduction ....................................... 35 4.2 Methods ......................................... 36 Thefuzzy c-means algorithm ........................ 39 Evaluation of the associations ........................ 43 Desiccation survival of the moss carpets ................ 44 4.3 Results .......................................... 45 Vegetationanalysis ............................... 45 Assessment of moss associations .....................
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Globally Widespread Bryophytes, but Rare in Europe
    Portugaliae Acta Biol. 20: 11-24. Lisboa, 2002 GLOBALLY WIDESPREAD BRYOPHYTES, BUT RARE IN EUROPE Tomas Hallingbäck Swedish Threatened Species Unit, P.O. Box 7007, SE-75007 Uppsala, Sweden. [email protected] Hallingbäck, T. (2002). Globally widespread bryophytes, but rare in Europe. Portugaliae Acta Biol. 20: 11-24. The need to save not only globally threatened species, but also regionally rare and declining species in Europe is discussed. One rationale of red-listing species regionally is to be preventive and to counteract the local species extinction process. There is also a value in conserving populations at the edge of their geographical range and this is discussed in terms of genetic variation. Another reason is the political willingness of acting locally rather than globally. Among the rare and non-endemic species in Europe, some are rare and threatened both in Europe and elsewhere, others are more common outside Europe and a third group is locally common within Europe but rare in the major part. How much conservation effort should be put on these three European non-endemic species groups is briefly discussed, as well as why bryophytes are threatened. A discussion is given, for example, of how a smaller total distribution range, decreasing density of localities, smaller sites, less substrate and lower habitat quality affect the survival of sensitive species. This is also compared with species that have either high or low dispersal capacity or different longevity of either vegetative parts or spores. Examples from Sweden are given. Key words: Bryophytes, rarity, Europe, dispersal capacity, Sweden. Hallingbäck, T. (2002).
    [Show full text]
  • Antibacterial Activity of Bryophyte (Funaria Hygrometrica) on Some Throat Isolates
    International Journal of Health and Pharmaceutical Research ISSN 2045-4673 Vol. 4 No. 1 2018 www.iiardpub.org Antibacterial Activity of Bryophyte (Funaria hygrometrica) on some throat Isolates Akani, N. P. & Barika P. N. Department of Microbiology, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt P.M.B. 5080 Rivers State, Nigeria E. R. Amakoromo Department of Microbiology, University of Port Harcourt Choba P.M.B 5323 Abstract An investigation was carried out to check the antibacterial activity of the extract of a Bryophyte, Funaria hygrometrica on some throat isolates and compared with the standard antibiotics using standard methods. The genera isolated were Corynebacterium sp., Lactobacillus sp. and Staphylococcus sp. Result showed a significant difference (p≤0.05) in the efficacy of F. hygrometrica extract and the antibiotics on the test organisms. The zones of inhibition in diameter of the test organisms ranged between 12.50±2.08mm (F. hygrometrica extract) and 33.50±0.71mm (Cefotaxamine); 11.75±2.3608mm (F. hygrometrica extract) and 25.50±0.71mm (Cefotaxamine) and 0.00±0.00mm (Tetracycline) and 29.50±0.71mm (Cefotaxamine) for Lactobacillus sp, Staphylococcus sp. and Corynebacterium sp. respectively while the control showed no zone of inhibition (0.00±0.00mm). The test organisms were sensitive to the antibiotics except Corynebacterium being resistant to Tetracycline. The minimal inhibitory concentration of plant extract and antibiotics showed a significant difference (p≤0.05) on the test organisms and ranged between 0.65±0.21 mg/ml (Cefotaxamine) and 4.25±0.35 mg/ml (Penicillin G); 0.04±0.01 mg/ml (Penicillin G) and 2.50±0.00 mg/ml ((F.
    [Show full text]
  • Part 4 Appendices
    Part 4 Appendices HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 139 Appendix 1. Proclamation of Heard Island and McDonald Islands Marine Reserve 140 MANAGEMENT PLAN HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 141 142 MANAGEMENT PLAN Appendix 2. Native Fauna of the HIMI Marine Reserve Listed Under the EPBC Act Scientific Name Common Name Birds recorded as breeding Aptenodytes patagonicus king penguin S Catharacta lonnbergi subantarctic skua S Daption capense cape petrel S Diomeda exulans wandering albatross V S M B J A Diomeda melanophrys black–browed albatross S M B A Eudyptes chrysocome southern rockhopper penguin S Eudyptes chrysolophus macaroni penguin S Larus dominicanus kelp gull S Macronectes giganteus southern giant petrel E S M B A Oceanites oceanicus Wilson’s storm petrel S M J Pachyptila crassirostris fulmar prion S Pachyptila desolata Antarctic prion S Pelecanoides georgicus South Georgian diving petrel S Pelecanoides urinatrix common diving petrel S Phalacrocorax atriceps (e) Heard Island cormorant V S Phoebetria palpebrata light mantled sooty albatross S M B A Pygoscelis papua gentoo penguin S Sterna vittata Antarctic tern V S Non–breeding birds Catharacta maccormicki south polar skua S M J Diomedea epomophora southern royal albatross V S M B A Fregetta grallaria white–bellied storm petrel S Fregetta tropica black–bellied storm petrel S Fulmarus glacialoides southern fulmar S Garrodia nereis grey–backed storm petrel S Halobaena caerulea blue petrel V S Macronectes halli northern giant petrel V S M B A Pachyptila belcheri
    [Show full text]
  • Volume 1, Chapter 2-7: Bryophyta
    Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium.....................................................................................................
    [Show full text]
  • An Annotated Checklist of Tasmanian Mosses
    15 AN ANNOTATED CHECKLIST OF TASMANIAN MOSSES by P.I Dalton, R.D. Seppelt and A.M. Buchanan An annotated checklist of the Tasmanian mosses is presented to clarify the occurrence of taxa within the state. Some recently collected species, for which there are no published records, have been included. Doubtful records and excluded speciei. are listed separately. The Tasmanian moss flora as recognised here includes 361 species. Key Words: mosses, Tasmania. In BANKS, M.R. et al. (Eds), 1991 (3l:iii): ASPECTS OF TASMANIAN BOTANY -- A TR1BUn TO WINIFRED CURTIS. Roy. Soc. Tasm. Hobart: 15-32. INTRODUCTION in recent years previously unrecorded species have been found as well as several new taxa described. Tasmanian mosses received considerable attention We have assigned genera to families followi ng Crosby during the early botanical exploration of the antipodes. & Magill (1981 ), except where otherwise indicated in One of the earliest accounts was given by Wilson (1859), the case of more recent publications. The arrangement who provided a series of descriptions of the then-known of families, genera and species is in alphabetic order for species, accompanied by coloured illustrations, as ease of access. Taxa known to occur in Taslnania ami Part III of J.D. Hooker's Botany of the Antarctic its neighbouring islands only are listed; those for Voyage. Although there have been a number of papers subantarctic Macquarie Island (politically part of since that time, two significant compilations were Tasmania) are not treated and have been presented published about the tum of the century. The first was by elsewhere (Seppelt 1981).
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]