Redalyc.Record of the Rare Oceanic Salp Helicosalpa Komaii

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Record of the Rare Oceanic Salp Helicosalpa Komaii Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Hereu, Clara M.; Suárez-Morales, Eduardo; Lavaniegos, Bertha E. Record of the rare oceanic salp Helicosalpa komaii (Tunicata: Thaliacea: Salpida) in the Northeast Pacific Revista Mexicana de Biodiversidad, vol. 85, núm. 2, 2014, pp. 624-629 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42531364021 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad 85: 624-629, 2014 624 Hereu et al.- New record of Helicosalpa komaiiDOI: in 10.7550/rmb.36638 Northeast Pacific Research note Record of the rare oceanic salp Helicosalpa komaii (Tunicata: Thaliacea: Salpida) in the Northeast Pacific Registro de una especie oceánica rara de salpa Helicosalpa komaii (Tunicata: Thaliacea: Salpida) en el Pacífico nororiental Clara M. Hereu1 , Eduardo Suárez-Morales2 and Bertha E. Lavaniegos3 1Facultad de Ciencias, Universidad Autónoma de Baja California. Carretera Tijuana-Ensenada, Km 103, 22860 Ensenada, Baja California, Mexico. 2Departamento de Ecología y Sistemática Acuática, El Colegio de la Frontera Sur. Av. Centenario, Km 5.5, 77014 Chetumal, Quintana Roo, Mexico. 3Departamento de Oceanografía Biológica, Centro de Investigación y de Educación Superior de Ensenada. Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico. [email protected] Abstract. We report for the first time the presence of a rare salp Helicosalpa komaii (Ihle and Ihle-Landenberg, 1936) on the west coast of Baja California peninsula (26°52.7’ N, 117°09.2’ W). The single specimen recorded was a solitary zooid of 200 mm length and 90 ml of displacement volume. It was recognized by having a distinctive highly convoluted heart-shaped dorsal tubercle. The total number of muscle fibers in the solitary zooid (MI to MVII= 517) surpassed that of the other 2 known congeners supporting its identity as H. komaii. H. komaii increases to 29 the total number of salps species reported in coastal and oceanic waters off north-central Baja California (gamma diversity). We hypothesize that the presence of H. komaii in the study area may be the result of onshore intrusions of subtropical waters originating west-southwest of the California Current domain. Key words: salps, marine zooplankton, pelagic tunicates, California Current, Baja California. Resumen. Se registra por primera vez la presencia de una especie rara de salpa Helicosalpa komaii (Ihle y Ihle Landenberg, 1936) en la costa oeste de la península de Baja California (26°52.7’ N, 117°09.2’ O). El ejemplar registrado fue un zooide solitario de 200 mm longitud total y una biomasa de 90 ml (volumen desplazado). El ejemplar fue reconocido por su característico tubérculo dorsal en forma de corazón. El número total de fibras musculares en el zooide solitario (MI a MVII= 517) superó el de los otros dos congéneres conocidos, apoyando su identificación como H. komaii. El registro de H. komaii incrementó a 29 el número total de especies de salpas registradas en aguas costeras y oceánicas del centro-norte de Baja California (diversidad gamma). Nuestra hipótesis es que la presencia de H. komaii en el área de estudio se debe a su acarreo hacia la costa por agua subtropical procedente del oeste-suroeste del dominio de la corriente de California. Palabras clave: salpas, zooplancton marino, tunicados pelágicos, corriente de California, Baja California. Salps are pelagic tunicates widely distributed in all to the worldwide 44 known species (Van Soest, 1998; oceans, comprising the most diverse order among the Govindarajan et al., 2010). thaliaceans (Van Soest, 1998). The order Salpida contains Cyclosalpinae salps of the genus Helicosalpa (Todaro, 1 family with 2 subfamilies: Cyclosalpinae Yount, 1954 1902) are among the most rarely collected. Currently, including 2 genera, and Salpinae Yount, 1954 with eleven the genus contains 3 species: Helicosalpa virgula (Vogt, genera. Salps have wide zoogeographic distribution and 1854), H. younti Kashkina 1973, and H. komaii (Ihle and the discovery of new species is considerably rare. Only Ihle-Landenberg, 1936), a species originally described a few new species have been added in the last decades as Cyclosalpa komaii (Van Soest, 2013). Helicosalpa virgula has the widest zoogeographic distribution and is the most frequent species reported in the genus. This Recibido: 30 marzo 2013; aceptado: 22 enero 2014 large species has been recorded from different localities Revista Mexicana de Biodiversidad 85: 624-629, 2014 DOI: 10.7550/rmb.36638 625 in the Mediterranean, the Atlantic Ocean and also from 120.70 (26°52.7’ N, 117°9.2’ W; 17.19 °C and 33.44 PSU the Indian and the Pacific Oceans (Fig. 1). Fewer H. at 10 m depth) of the research program “Investigaciones younti records exist, known only from the central Pacific, Mexicanas de la Corriente de California” (IMECOCAL, off India (Van Soest, 1974), and from Chilean waters; Fig. 1) (Lavaniegos et al., 2006). The zooplankton sample its aggregate zooid was recently described by Esnal et was collected with a Bongo net (71 cm mouth diameter, 0.5 al. (1998). Helicosalpa komaii is the rarest species with mm mesh size) obliquely towed from 200 m depth to the only 1 solitary and 30 aggregates zooids recorded in the surface. The zooplankton sample was preserved in a 4% western Pacific (Komai, 1932), a single solitary zooid formaldehyde solution buffered with sodium borate. The reported in Central Pacific waters (Yount, 1954), a chain The specimen of H. komaii was deposited in the collection of 8 aggregates in the Gulf of California (Madin, 1968) and of zooplankton at El Colegio de la Frontera Sur, Unidad 14 aggregates zooids collected in the Indian Ocean (Van Chetumal, in Chetumal, Quintana Roo, Mexico (specimen Soest, 1974). There are 2 recent additional records of the catalog number ECO-CH-Z-6300). species, from southwest Taiwan (Tew and Lo, 2005) and The solitary zooid specimen of H. komaii collected off the coast of Peru (Ayón et al., 2008). Unfortunately, and examined was physically damaged, since a section of neither figures nor zooid specifications were provided by the outer gelatinous tunic from the body wall was partially these authors. Here we report the extension range of H. broken off. However, a careful handling of the organism komaii in the Northeast Pacific, particularly off the coast in a wide glass container allowed a detailed observation of Baja California peninsula, Mexico. of the main taxonomic features that distinguishes the The zooplankton sample containing the specimen of solitary form of H. komaii from the other species known Helicosalpa komaii reported here was obtained during a of the same genus: H. virgula and H. younti. Distinctive nighttime trawl carried out on February 14, 2004 at station H. komaii taxonomic features are: the presence of 2 ventral Figure 1. Worldwide records of the genus Helicosalpa: H. komaii (squares), H. younti (diamonds) and H. virgula (circles). The sampling grid off Baja California by IMECOCAL Program is detailed in lower left corner showing northern (N) and southern (S) sectors and the location of records of H. komaii off Baja California and in the Gulf of California (GC). Locations were obtained from: Thompson, 1948; Yount, 1954; Madin, 1968; Hubbard and Pearcy, 1971; Van Soest, 1974; Blackburn, 1979; Madin et al., 1996; Esnal et al., 1998; Tew and Lo, 2005; Hereu et al., 2006; Wiebe et al., 2006; Ayón et al., 2008; Weikert and Godeaux, 2008; and Lavaniegos (unpublished data). Average Sea Surface Temperature taken from WOA09 at NOAA´s “Ocean Climate Laboratory” free access server (Locarnini et al., 2010). 626 Hereu et al.- New record of Helicosalpa komaii in Northeast Pacific longitudinal muscles (found only in Helicosalpa, absent in Cyclosalpa) stretching between the intermediate muscles and muscle VII, 1 dorsal longitudinal muscle, and a highly convoluted heart-shaped dorsal tubercle (Figs. 2, 3). Another specimen corresponding to the aggregate form of the genus Helicosalpa was also found in the same zooplankton sample, bearing a horn-like antero-dorsal projection, which is also present in H. virgula and H. younti. The 8 mm length aggregate zooid resembled the sinistral individual of H. komaii (figure 6B in Komai, 1932) in the presence of a roundish postero-ventral protrusion (not tapering posteriorly into a narrow point). The dorsal tubercle was not as convoluted as described by Van Soest (1974) for the aggregate zooid of H. komaii. However, Esnal et al. (1998) mention that this character is variable with size, being more convoluted in larger individuals. Figure 3. Heart-shaped dorsal tubercle of the solitary zooid of The disposition of body muscles and number of muscles Helicosalpa komaii from off Baja California. fibers were difficult to observe in this small aggregate specimen, therefore its definitive identity remains dubious and emphasis is given on the collected solitary specimen. (94 mm) collected south of Hawaii, outlining only slight Only 2 other studies provide biometric measurements differences between his and Komai´s specimen. According of the solitary form of H. komaii. Komai (1932) to Nakamura and Yount (1958), this species is among described the largest specimen known (230 mm) from the largest salps known in the Pacific Ocean, together Seto, Japan, and Yount (1954) described another solitary with Tethys vagina and Salpa maxima. We compared our specimen based on the taxonomic characters used in the 2 previous morphometric descriptions, particularly taking care of the muscle arrangement and the presence/absence of other relevant taxonomic characters. Solitary form. The solitary specimen from Baja California was approximately 200 mm length and 60 mm height, with a biovolume of 90 mL with 6 years of preservation after collection.
Recommended publications
  • An Observation of Two Oceanic Salp Swarms in the Tasman Sea: Thetys Vagina and Cyclosalpa Affinis Natasha Henschke1,2,3*, Jason D
    Henschke et al. Marine Biodiversity Records (2016) 9:21 DOI 10.1186/s41200-016-0023-8 MARINE RECORD Open Access An observation of two oceanic salp swarms in the Tasman Sea: Thetys vagina and Cyclosalpa affinis Natasha Henschke1,2,3*, Jason D. Everett1,2,3 and Iain M. Suthers1,2,3 Abstract Background: Large oceanic salps are rarely encountered. The highest recorded biomasses of the salps Thetys vagina (852 g WW m−3)andCyclosalpa affinis (1149 g WW m−3) were observed in the Tasman Sea during January 2009. Results: Due to their fast sinking rates the carcasses and faecal pellets of these and other large salps play a significant role in carbon transport to the seafloor. We calculated that faecal pellets from these swarms could have contributed up to 67 % of the mean organic daily carbon flux in the area. This suggests that the flux of carbon from salp swarms are not accurately captured in current estimates. Conclusion: This study contributes information on salp abundance and biomass to a relatively understudied field, improving estimates for biogeochemical cycles. Background (Henschke et al., 2013) can increase the carbon flux in an The role of gelatinous zooplankton, such as salps, pyro- area up to ten-fold the daily average (Fischer et al., 1988) somes and cnidarians, in ocean food webs and biogeo- for a sustained period of time (Smith et al. 2014). chemical cycling has garnered increased attention in Due to their regular occurrence (Henschke et al., recent years (Lebrato et al., 2011; Henschke et al., 2013; 2014) and coastal dominance (Henschke et al 2011), Lebrato et al., 2013; Smith et al.
    [Show full text]
  • Salp Contributions to Vertical Carbon Flux in the Sargasso Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Salp contributions to vertical carbon flux in the Sargasso Sea JP Stone Virginia Institute of Marine Science Deborah K. Steinberg Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Stone, JP and Steinberg, Deborah K., "Salp contributions to vertical carbon flux in the Sargasso Sea" (2016). VIMS Articles. 797. https://scholarworks.wm.edu/vimsarticles/797 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 1 Salp contributions to vertical carbon flux in the Sargasso 2 Sea 3 4 5 Joshua P. Stonea,*, Deborah K. Steinberga 6 a Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, 7 PO Box 1346, Gloucester Point, VA 23062, USA 8 * Corresponding author. 9 E-mail addresses: [email protected] (J. Stone), [email protected] (D. Steinberg) 10 11 1 © 2016. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/ 12 Abstract 13 We developed a one-dimensional model to estimate salp contributions to vertical carbon flux at the 14 Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic subtropical gyre for a 17-yr period 15 (April 1994 to December 2011).
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Towards an Understanding of Salp Swarm Dynamics. ICES CM 2002/N
    CM 2002/ N:12 Towards an understanding of salp swarm dynamics by Patricia Kremer ABSTRACT Species of salps are characterized by intermittent blooms. Several studies have documented the importance of physical processes both in providing seed stocks of salps and creating an environment that is favorable for the rapid increase of salp populations. Although salps are typically oceanic, most observations of bloom dynamics have been made in more accessible inshore waters, so it is difficult to assess how frequent and widespread these swarms are. A review and comparison of existing data is helping to define geographic “hot spots” for salp blooms as well as the necessary physical and biological precursors. Although at this point, the review is far from complete, several generalities are emerging. The details of the physical forcing functions vary, but the overall physical regime seems to require a region of pulsed mixing of oceanic water that results in a relatively high standing stock of autotrophs. For a salp bloom to occur, there also needs to be an adequate seed population of salps and sufficient sustained primary production to support the biomass of the salp population as the bloom develops. As non-selective filter feeders, salps are able to remove a wide range of particulates from the water column, transforming the undigested portion into fast sinking feces. Therefore, when salps occur at high densities, the water is characterized by low abundance of other plankton, with obvious trophic implications. Patricia Kremer: Marine Sciences, University of Connecticut, Groton CT 06340-6097, USA [tel: +1 860 405 9140; fax: +1 860 405 9153; e-mail [email protected]] INTRODUCTION Salps are holoplanktonic grazers that have a life history, feeding biology, and population dynamics that contrasts sharply to copepods and other crustacean zooplankton (Madin and Deibel 1998).
    [Show full text]
  • Biomass of Zooplankton and Micronekton in the Southern Bluefin Tuna Fishing Grounds Off Eastern Tasmania, Australia
    -- MARINE ECOLOGY PROGRESS SERIES Vol. 138: 1-14, 1996 Published July 25 , Mar Ecol Prog Ser Biomass of zooplankton and micronekton in the southern bluefin tuna fishing grounds off eastern Tasmania, Australia J. W. Young*, R. W. Bradford, T. D. Lamb, V. D. Lyne CSIRO Marine Laboratories, Division of Fisheries. GPO Box 1538. Hobart 7001, Tasmania, Australia ABSTRACT: The southern bluefin tuna (SBT) supports a seasonal fishery off the east coast of Tasmania, Australia. The distribution of zooplankton biomass in this region was examined as a means of finding out why the SBT are attracted to this area. We examined whether there was a particular area or depth stratum that supported significantly greater amounts of potential feed, directly or indirectly, for SBT Samples of zooplankton and micronekton were collected during the winter SBT fishery seasons in 1992-94. Five net types (mouth opening 0 25 to -80 m') w~thcodend mesh sizes ranging from 100 to 1000 pm were used. Samples were collected from 4 main hydrographic areas: warm East Australian Current water, cool subantarctic water, the front separating them (the subtrop~calconvergence), and the adjacent shelf. Four depth strata (50, 150, 250 and 350 m) were also sampled. In contrast to our expectations, the biomass in the subtropical convergence was no greater than that in the 3 other areas. Rather, it was the shelf, albeit with some inconsistencies, that generally had the greatest biomass of both zooplankton and micronekton. Offshore, there was no s~gnificantdifference in the biomass of the depth strata sampled, although the biomass of gelatinous zooplankton in the surface waters increased during the study period.
    [Show full text]
  • New Perspectives on the Evolution of Protochordate Sensory and Locomotory Systems, and the Origin of Brains and Heads*
    doi 10.1098/rstb.2001.0974 New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads* Thurston C. Lacalli Biology Department, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2 ([email protected]) Cladistic analyses generally place tunicates close to the base of the chordate lineage, consistent with the assumption that the tunicate tail is primitively simple, not secondarily reduced from a segmented trunk. Cephalochordates (i.e. amphioxus) are segmented and resemble vertebrates in having two distinct loco- motory modes, slow for distance swimming and fast for escape, that depend on separate sets of motor neurons and muscle cells. The sense organs of both amphioxus and tunicate larvae serve essentially as navigational aids and, despite some uncertainty as to homologies, current molecular and ultrastructural data imply a close relationship between them. There are far fewer signs of modi¢cation and reduction in the amphioxus central nervous system (CNS), however, so it is arguably the closer to the ancestral condi- tion. Similarities between amphioxus and tunicate sense organs are then most easily explained if distance swimming evolved before and escape behaviour after the two lineages diverged, leaving tunicates to adopt more passive means of avoiding predation. Neither group has the kind of sense organs or sensory integration centres an organism would need to monitor predators, yet mobile predators with eyes were probably important in the early Palaeozoic. For a predator, improvements in vision and locomotion are mutually reinforcing. Both features probably evolved rapidly and together, in an `arms race'of eyes, brains and segments that left protochordates behind, and ultimately produced the vertebrate head.
    [Show full text]
  • Climate Change and Southern Ocean Resilience
    No.No. 52 5 l l JuneMay 20202021 POLARKENNAN PERSPECTIVES CABLE Adélie penguins on top of an ice flow near the Antarctic Peninsula. © Jo Crebbin/Shutterstock Climate Change and Southern Ocean Resilience REPORT FROM AN INTERDISCIPLINARY SCIENTIFIC WORKSHOP, MARCH 30, 2021 Andrea Capurroi, Florence Colleoniii, Rachel Downeyiii, Evgeny Pakhomoviv, Ricardo Rourav, Anne Christiansonvi i. Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future ii. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Antarctic and Southern Ocean Coalition iii. Australian National University iv. University of British Columbia v. Antarctic and Southern Ocean Coalition vi. The Pew Charitable Trusts CONTENTS I. INTRODUCTION BY EVAN T. BLOOM 3 II. EXECUTIVE SUMMARY 5 III. CLIMATE CHANGE AND SOUTHERN OCEAN RESILIENCE 7 A. CLIMATE CHANGE AND THE SOUTHERN OCEAN 7 B. CONNECTION OF REGIONAL SOUTHERN OCEAN PROCESS TO GLOBAL SYSTEMS 9 C. UNDERSTANDING PROCESS CHANGES IN THE SOUTHERN OCEAN 10 D. ANTARCTIC GOVERNANCE AND DECISION MAKING 15 E. CONCLUSION 18 F. REFERENCES 19 POLAR PERSPECTIVES 2 No. 5 l June 2021 I. INTRODUCTION BY EVAN T. BLOOM vii Fig 1: Southern Ocean regions proposed for protection A network of MPAs could allow for conservation of distinct areas, each representing unique ecosystems As the world prepares for the Glasgow Climate Change Conference in November 2021, there is considerable focus on the Southern Ocean. The international community has come to realize that the polar regions hold many of the keys to unlocking our understanding of climate-related phenomena - and thus polar science will influence policy decisions on which our collective futures depend.
    [Show full text]
  • High Abundance of Salps in the Coastal Gulf of Alaska During 2011
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/301733881 High abundance of salps in the coastal Gulf of Alaska during 2011: A first record of bloom occurrence for the northern Gulf Article in Deep Sea Research Part II Topical Studies in Oceanography · April 2016 DOI: 10.1016/j.dsr2.2016.04.009 CITATION READS 1 33 4 authors, including: Ayla J. Doubleday Moira Galbraith University of Alaska System Institute of Ocean Sciences, Sidney, BC, Cana… 3 PUBLICATIONS 16 CITATIONS 28 PUBLICATIONS 670 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: l. salmonis and c. clemensi attachment sites: chum salmon View project All content following this page was uploaded by Moira Galbraith on 10 June 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 High abundance of salps in the coastal Gulf of Alaska during 2011: A first record of bloom occurrence for the northern Gulf Kaizhi Li a, Ayla J. Doubleday b, Moira D. Galbraith c, Russell R. Hopcroft b,n a Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China b Institute of Marine Science, University of Alaska, Fairbanks, AK 99775-7220, USA c Institute of Ocean Sciences, Fisheries and Oceans Canada, P.O.
    [Show full text]
  • Ecology of Midwater Zooplankton and Fishes Off Eastern Tasmania, Australia
    JOCK YOUNG, Hippoly te Rock, S.E. Tasmania 1994, oil on linen, 61x121.Scm ECOLOGY OF MIDWATER ZOOPLANKTON AND FISHES OFF EASTERN TASMANIA, AUSTRALIA by Jock W. Young (BSc MSc) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania March 1998 DECLARATION AND AUTHORITY OF ACCESS I hereby declare that the material in this thesis is original except where due acknowledgment is given, and that the material has not been accepted for the award of any other degree or diploma. This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968. Jock W. Young ii ABSTRACT This thesis examines the ecology of zooplankton, midwater fishes and top predators off the east coast of Tasmania in relation to the regional oceanography. This work was completed from small (<15 m) to large (60 + m) fishing and fisheries research vessels using nets ranging from fine-meshed plankton nets (100 µm) to large midwater trawls (cod end mesh size 10 mm). Further data was obtained from the Maria Island hydrographic station and the AFZ observer program. The study area was situated in and around the northern edge of the subtropical convergence zone. This zone separates the most southern edge of the East Australia Current from the broader subtropical convergence and subantarctic water to the south. The latitudinal position of this front depends not only on the time of year - in the summer it extends southward and retreats in winter - but also on interannual cycles such as the El Nino Southern Oscillation.
    [Show full text]
  • Differences in Diet of Atlantic Bluefin Tuna
    16 8 Abstract–The stomachs of 819 Atlan­ Differences in diet of Atlantic bluefin tuna tic bluefin tuna (Thunnus thynnus) sampled from 1988 to 1992 were ana­ (Thunnus thynnus) at five seasonal feeding grounds lyzed to compare dietary differences among five feeding grounds on the on the New England continental shelf* New England continental shelf (Jef­ freys Ledge, Stellwagen Bank, Cape Bradford C. Chase Cod Bay, Great South Channel, and South of Martha’s Vineyard) where a Massachusetts Division of Marine Fisheries majority of the U.S. Atlantic commer­ 30 Emerson Avenue cial catch occurs. Spatial variation in Gloucester, Massachusetts 01930 prey was expected to be a primary E-mail address: [email protected] influence on bluefin tuna distribution during seasonal feeding migrations. Sand lance (Ammodytes spp.), Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus), squid (Cephalopoda), and bluefish (Pomato­ Atlantic bluefin tuna (Thunnus thyn- England continental shelf region, and mus saltatrix) were the top prey in terms of frequency of occurrence and nus) are widely distributed throughout as a baseline for bioenergetic analyses. percent prey weight for all areas com­ the Atlantic Ocean and have attracted Information on the feeding habits of bined. Prey composition was uncorre­ valuable commercial and recreational this economically valuable species and lated between study areas, with the fisheries in the western North Atlantic apex predator in the western North exception of a significant association during the latter half of the twentieth Atlantic Ocean is limited, and nearly between Stellwagen Bank and Great century. The western North Atlantic absent for the seasonal feeding grounds South Channel, where sand lance and population is considered overfished by where most U.S.
    [Show full text]
  • Phylum: Chordata
    PHYLUM: CHORDATA Authors Shirley Parker-Nance1 and Lara Atkinson2 Citation Parker-Nance S. and Atkinson LJ. 2018. Phylum Chordata In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 477-490. 1 South African Environmental Observation Network, Elwandle Node, Port Elizabeth 2 South African Environmental Observation Network, Egagasini Node, Cape Town 477 Phylum: CHORDATA Subphylum: Tunicata Sea squirts and salps Urochordates, commonly known as tunicates Class Thaliacea (Salps) or sea squirts, are a subphylum of the Chordata, In contrast with ascidians, salps are free-swimming which includes all animals with dorsal, hollow in the water column. These organisms also ilter nerve cords and notochords (including humans). microscopic particles using a pharyngeal mucous At some stage in their life, all chordates have slits net. They move using jet propulsion and often at the beginning of the digestive tract (pharyngeal form long chains by budding of new individuals or slits), a dorsal nerve cord, a notochord and a post- blastozooids (asexual reproduction). These colonies, anal tail. The adult form of Urochordates does not or an aggregation of zooids, will remain together have a notochord, nerve cord or tail and are sessile, while continuing feeding, swimming, reproducing ilter-feeding marine animals. They occur as either and growing. Salps can range in size from 15-190 mm solitary or colonial organisms that ilter plankton. in length and are often colourless. These organisms Seawater is drawn into the body through a branchial can be found in both warm and cold oceans, with a siphon, into a branchial sac where food particles total of 52 known species that include South Africa are removed and collected by a thin layer of mucus within their broad distribution.
    [Show full text]