An Observation of Two Oceanic Salp Swarms in the Tasman Sea: Thetys Vagina and Cyclosalpa Affinis Natasha Henschke1,2,3*, Jason D

Total Page:16

File Type:pdf, Size:1020Kb

An Observation of Two Oceanic Salp Swarms in the Tasman Sea: Thetys Vagina and Cyclosalpa Affinis Natasha Henschke1,2,3*, Jason D Henschke et al. Marine Biodiversity Records (2016) 9:21 DOI 10.1186/s41200-016-0023-8 MARINE RECORD Open Access An observation of two oceanic salp swarms in the Tasman Sea: Thetys vagina and Cyclosalpa affinis Natasha Henschke1,2,3*, Jason D. Everett1,2,3 and Iain M. Suthers1,2,3 Abstract Background: Large oceanic salps are rarely encountered. The highest recorded biomasses of the salps Thetys vagina (852 g WW m−3)andCyclosalpa affinis (1149 g WW m−3) were observed in the Tasman Sea during January 2009. Results: Due to their fast sinking rates the carcasses and faecal pellets of these and other large salps play a significant role in carbon transport to the seafloor. We calculated that faecal pellets from these swarms could have contributed up to 67 % of the mean organic daily carbon flux in the area. This suggests that the flux of carbon from salp swarms are not accurately captured in current estimates. Conclusion: This study contributes information on salp abundance and biomass to a relatively understudied field, improving estimates for biogeochemical cycles. Background (Henschke et al., 2013) can increase the carbon flux in an The role of gelatinous zooplankton, such as salps, pyro- area up to ten-fold the daily average (Fischer et al., 1988) somes and cnidarians, in ocean food webs and biogeo- for a sustained period of time (Smith et al. 2014). chemical cycling has garnered increased attention in Due to their regular occurrence (Henschke et al., recent years (Lebrato et al., 2011; Henschke et al., 2013; 2014) and coastal dominance (Henschke et al 2011), Lebrato et al., 2013; Smith et al. 2014). Salps (Phylum: smaller salps such as Thalia democratica are studied Thaliacea, Order Salpidae) in particular, are significant with greater frequency. Although these smaller salps contributors to oceanic carbon flux. They have the highest contribute significantly to biogeochemical cycling with per-individual filtration rates of all marine zooplankton fil- fast growth rates (Heron, 1972a) and faecal pellets, car- ter feeders (Alldredge and Madin, 1982) consuming parti- casses of these smaller salps rarely sink as they are neu- cles across three orders of magnitude (1 μmupto1mm trally buoyant (Tsukamoto et al., 2009). The carcasses of in size; Vargas and Madin, 2004; Sutherland et al., 2010) larger salps however, sink rapidly and have the potential using a fine mucous net that is continuously secreted and to reach the sea floor in less than 2 days (Henschke et al., fed toward the oesophagus. This efficient feeding mechan- 2013; Lebrato et al., 2013). Due to the combined input ism and their alternating sexual and asexual life-cycle re- from both faecal pellets and carcasses, swarms of larger − sults in fast individual (up to 21 % in length h 1;Heron, salps are thought to play a greater role in carbon export − 1972a) and population (up to 2.5 d 1; Heron, 1972b; (Smith et al. 2014). Of significance however, is that very Henschke et al., 2015) growth rates. As a result, salps form little is known about the distribution and abundance of large swarms that often reach abundances greater than larger salps as they are oceanic and rarely encountered. − − 1000 individuals m 3 (~6 kg WW m 3; Henschke et al., The aim of this study is to document swarm observations 2014) and persist for up to 6 months (Smith et al. 2014). from the Tasman Sea of two large salps: Thetys vagina and When salps occur in high abundances, their fast-sinking Cyclosalpa affinis and compare these biomasses to previ- faecal pellets (Bruland and Silver, 1981) and carcasses ous observations. Thetys vagina is often observed opportunistically as a * Correspondence: [email protected] single individual and little is known about their ecology 1Evolution and Ecology Research Centre, University of New South Wales, (Nakamura and Yount, 1958; McAlice, 1986; Sims, 1996; Sydney, NSW 2052, Australia 2 Stone and Steinberg, 2014). Large biomasses (900 t WW Sydney Institute of Marine Science, Building 22, Chowder Bay Road, −3 Mosman, NSW 2088, Australia km )ofT. vagina have been observed in the Japan Sea Full list of author information is available at the end of the article (Iguchi and Kidokoro, 2006) and Tasman Sea (Thompson, © 2016 Henschke et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Henschke et al. Marine Biodiversity Records (2016) 9:21 Page 2 of 5 1948; Henschke et al., 2013). Although T. vagina has been Methods found across a wide temperature (7–20 °C) and salinity Salp samples were collected onboard the R.V. Southern (33.9–35.6) range (Thompson, 1948; Iguchi and Kidokoro, Surveyor in the austral summer (25–29 January 2009) in 2006; Henschke et al., 2013), there appears to be no sea- the western Tasman Sea (Fig. 1). Sampling stations were sonality to T. vagina swarms (Henschke et al 2013). located at Gascoyne Seamount (n = 5) and on the Chal- In the Japan Sea and Tasman Sea, higher T. vagina bio- lenger Plateau (n = 1). Gascoyne Seamount is part of the mass occurred in areas of higher chlorophyll a (Iguchi Tasmantid Seamount Chain in the Tasman Sea, and rises and Kidokoro, 2006; Henschke et al., 2013). As seamounts to 93 m below the surface from a bottom depth of have been found to promote localised upwelling (Boehlert 4000 m (Quilty, 1993). The Challenger Plateau is a large and Genin, 1987; Suthers, 1996), this is one factor that submarine plateau west of New Zealand, with depths may have encouraged the T. vagina population to aggre- varying from 500 to 1500 m, and is considered to be a gate around Gascoyne Seamount in this report. region of low pelagic productivity (Wood, 1991). Although the ecology of Cyclosalpa affinis is well stud- At each sampling station a Seabird SBE911-plus Con- ied (e.g. Madin, 1974; Madin et al., 1981; Vargas and ductivity–Temperature–Depth (CTD) recorder equipped Madin, 2004), their distribution is not well known. Unlike with an AquaTracker Mk3 fluorometer (Chelsea, UK) was T. vagina, the relationship between upwelling events and used to record salinity, temperature, and fluorescence, re- C. affinis populations is unknown. Long-term studies have spectively. Salps were sampled at the surface with a neu- found that C. affinis generally occurs in low numbers ston net (0.75 m × 0.75 m, 500 μmmesh;n = 2) and from − (<30 g WW m 3) and has been characterised as a cool- 0 to 40 m using a rectangular mid-water trawl (RMT; phase species, occurring after intrusions of cooler high 1 m × 1 m, 1 mm mesh, double-oblique tows; n =1).The latitude water (Lavaniegos and Ohman, 2003). However, neuston net was towed for 5 min, and the RMT for − C. affinis has also been found in the subtropical Tasman 30 min, both at 1.5 m s 1. All tows were undertaken at Sea (32.8°S and 32.57°S) and the warmer parts of the night (2100–0200 h). Immediately after sampling, zoo- Indian, Pacific and Atlantic oceans (Thompson, 1948) sug- plankton were preserved in 5 % formaldehye solution. gesting that its temperature tolerance may be quite broad. Salps were identified to species and total length and wet Fig. 1 Location plot showing sampling locations in the Tasman Sea. Overlaid is satellite derived a) sea surface temperature and b) chlorophyll a. Sampling stations on Gascoyne Seamount are represented by squares (n = 5) and Challenger Plateau is represented by triangles (n =1) Henschke et al. Marine Biodiversity Records (2016) 9:21 Page 3 of 5 − − weight was measured for each individual. Due to salps be- was 851.7 ± 280.6 g WW m 3 (12.7 mg C m 3;Fig.2d). ing damaged in the RMT net, total length of salps from These values are higher than biomasses previously sam- − the RMT samples could not be measured. Carbon calcula- pled in the Japan Sea (maximum of 0.9 g WW m 3;Iguchi tions were based on carbon-length relationships previ- and Kidokoro, 2006) and Tasman Sea (maximum of 0.7 g − ously established for T. vagina (Henschke et al., 2013) and WW m 3; Henschke et al., 2013). At one station during C. affinis (Madin et al., 1981). Pearson correlations were sampling, the weight of high abundances of T. vagina tore undertaken to determine if there were any relationships the RMT net. Higher biomasses in the oblique tows (vs. between salp biomass and location to the seamount. neuston tows) suggest that T. vagina were more abundant deeper in the water column (Fig. 2d). Aggregation of salp Results and discussion biomass in the top 40 m is consistent with previous re- The Gascoyne Seamount transect extended for 38 km search that has found that 98 % of T. vagina abundances crossing west-east over the seamount. At the time of sam- occurred in the top 200 m during both day and night pling, sea surface temperature at Gascoyne Seamount was (Henschke et al., 2013). There is no known data on verti- ~22 °C compared to Challenger Plateau which was cooler cal migration by T. vagina and all samples in this study (~19 °C) and had higher chlorophyll a concentrations were undertaken only at night, but anecdotal observations (Fig.
Recommended publications
  • Salp Contributions to Vertical Carbon Flux in the Sargasso Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Salp contributions to vertical carbon flux in the Sargasso Sea JP Stone Virginia Institute of Marine Science Deborah K. Steinberg Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Stone, JP and Steinberg, Deborah K., "Salp contributions to vertical carbon flux in the Sargasso Sea" (2016). VIMS Articles. 797. https://scholarworks.wm.edu/vimsarticles/797 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 1 Salp contributions to vertical carbon flux in the Sargasso 2 Sea 3 4 5 Joshua P. Stonea,*, Deborah K. Steinberga 6 a Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, 7 PO Box 1346, Gloucester Point, VA 23062, USA 8 * Corresponding author. 9 E-mail addresses: [email protected] (J. Stone), [email protected] (D. Steinberg) 10 11 1 © 2016. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/ 12 Abstract 13 We developed a one-dimensional model to estimate salp contributions to vertical carbon flux at the 14 Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic subtropical gyre for a 17-yr period 15 (April 1994 to December 2011).
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Trophic Ecology of Gelatinous Zooplankton in Oceanic Food Webs of the Eastern Tropical Atlantic Assessed by Stable Isotope Analysis
    Limnol. Oceanogr. 9999, 2020, 1–17 © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11605 Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis Xupeng Chi ,1,2* Jan Dierking,2 Henk-Jan Hoving,2 Florian Lüskow,3,4 Anneke Denda,5 Bernd Christiansen,5 Ulrich Sommer,2 Thomas Hansen,2 Jamileh Javidpour2,6 1CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 2Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 3Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada 4Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada 5Institute of Marine Ecosystem and Fishery Science (IMF), Universität Hamburg, Hamburg, Germany 6Department of Biology, University of Southern Denmark, Odense M, Denmark Abstract Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning > 3 tro- phic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton.
    [Show full text]
  • Towards an Understanding of Salp Swarm Dynamics. ICES CM 2002/N
    CM 2002/ N:12 Towards an understanding of salp swarm dynamics by Patricia Kremer ABSTRACT Species of salps are characterized by intermittent blooms. Several studies have documented the importance of physical processes both in providing seed stocks of salps and creating an environment that is favorable for the rapid increase of salp populations. Although salps are typically oceanic, most observations of bloom dynamics have been made in more accessible inshore waters, so it is difficult to assess how frequent and widespread these swarms are. A review and comparison of existing data is helping to define geographic “hot spots” for salp blooms as well as the necessary physical and biological precursors. Although at this point, the review is far from complete, several generalities are emerging. The details of the physical forcing functions vary, but the overall physical regime seems to require a region of pulsed mixing of oceanic water that results in a relatively high standing stock of autotrophs. For a salp bloom to occur, there also needs to be an adequate seed population of salps and sufficient sustained primary production to support the biomass of the salp population as the bloom develops. As non-selective filter feeders, salps are able to remove a wide range of particulates from the water column, transforming the undigested portion into fast sinking feces. Therefore, when salps occur at high densities, the water is characterized by low abundance of other plankton, with obvious trophic implications. Patricia Kremer: Marine Sciences, University of Connecticut, Groton CT 06340-6097, USA [tel: +1 860 405 9140; fax: +1 860 405 9153; e-mail [email protected]] INTRODUCTION Salps are holoplanktonic grazers that have a life history, feeding biology, and population dynamics that contrasts sharply to copepods and other crustacean zooplankton (Madin and Deibel 1998).
    [Show full text]
  • Ard David Brodeur
    Richard David Brodeur Estuarine and Ocean Ecology Program Northwest Fisheries Science Center National Oceanic and Atmospheric Administration Newport, OR 97365; Tel. 541-867-0336 email: [email protected]; ORCID: 0000-0002-6629-5564 website: https://www.researchgate.net/profile/Richard_Brodeur/contributions Research Interests Recruitment processes in marine fishes; the feeding habits and trophic interactions of pelagic and demersal nekton; the ecology, zoogeography and behavior of marine fishes; salmon marine ecology; bioacoustics, fisheries oceanography including environmental and biotic effects on the abundance and distribution patterns of fishes and zooplankton. Education Ph.D. Fisheries University of Washington, Seattle, WA 1990 M.S. Oceanography Oregon State University, Corvallis, OR 1983 B.S. Fishery Biology University of Massachusetts, Amherst, MA 1976 Positions Held Research Fishery Biologist (1991- ), National Marine Fisheries Service, Seattle & Newport, OR NMFS Scientific Editor (2008-2011), National Marine Fisheries Service, Newport, OR Visiting Investigator (2006), Pacific Islands Fisheries Science Center, Honolulu, HI Visiting Investigator (1998), Pacific Fisheries Environmental Laboratory, Pacific Grove, CA Uchida Visiting Fellow (1993), Ocean Research Institute, Tokyo, Japan Postdoctoral Fellow (1990-1991), Pacific Biological Station, Nanaimo, B.C., Canada Fishery Biologist (1987-1990), National Marine Fisheries Service, Seattle, WA Fishery Biologist (1987-1990), Fisheries Research Institute, Univ. of Wash., Seattle, WA Senior Research Assistant (1985-1987), Research Assistant (1979-1984), School of Oceanography, Oregon State University, Corvallis, OR Fishery Biologist (Summers 1981, 1983) National Marine Fisheries Service, Auke Bay, AK Biological Technician (Summer 1979) Office of Scientific Studies, National Park Service, Wellfleet, MA Biological Technician (1977-1979) National Marine Fisheries Service, Woods Hole, MA Volunteer (1976 and 1978) Woods Hole Oceanographic Institution, Woods Hole, MA Research Assistant (Summers 1975-1977) Mass.
    [Show full text]
  • The Secret Lives of JELLYFISH Long Regarded As Minor Players in Ocean Ecology, Jellyfish Are Actually Important Parts of the Marine Food Web
    The secret lives of JELLYFISH Long regarded as minor players in ocean ecology, jellyfish are actually important parts of the marine food web. BY GARRY HAMILTON ennifer Purcell watches intently as the boom of the research ship Moon jellyfish (Aurelia Skookum slowly eases a 3-metre-long plankton net out of Puget Sound aurita) contain more Jnear Olympia, Washington. The marine biologist sports a rain suit, calories than some which seems odd for a sunny day in August until the bottom of the net other jellyfish. is manoeuvred in her direction, its mesh straining from a load of moon jellyfish (Aurelia aurita). Slime drips from the bulging net, and long ten- tacles dangle like a scene from an alien horror film. But it does not bother Purcell, a researcher at Western Washington University’s marine centre in Anacortes. Pushing up her sleeves, she plunges in her hands and begins to count and measure the messy haul with an assuredness borne from nearly 40 years studying these animals. 432 | NATURE | VOL 531 | 24 MARCH 2016 © 2016 Macmillan Publishers Limited. All rights reserved FEATURE NEWS Most marine scientists do not share her enthusiasm for the creatures. also inaccessible, living far out at sea or deep below the light zone. They Purcell has spent much of her career locked in a battle to find funding often live in scattered aggregations that are prone to dramatic popula- and to convince ocean researchers that jellyfish deserve attention. But tion swings, making them difficult to census. Lacking hard parts, they’re she hasn’t had much luck.
    [Show full text]
  • Biomass of Zooplankton and Micronekton in the Southern Bluefin Tuna Fishing Grounds Off Eastern Tasmania, Australia
    -- MARINE ECOLOGY PROGRESS SERIES Vol. 138: 1-14, 1996 Published July 25 , Mar Ecol Prog Ser Biomass of zooplankton and micronekton in the southern bluefin tuna fishing grounds off eastern Tasmania, Australia J. W. Young*, R. W. Bradford, T. D. Lamb, V. D. Lyne CSIRO Marine Laboratories, Division of Fisheries. GPO Box 1538. Hobart 7001, Tasmania, Australia ABSTRACT: The southern bluefin tuna (SBT) supports a seasonal fishery off the east coast of Tasmania, Australia. The distribution of zooplankton biomass in this region was examined as a means of finding out why the SBT are attracted to this area. We examined whether there was a particular area or depth stratum that supported significantly greater amounts of potential feed, directly or indirectly, for SBT Samples of zooplankton and micronekton were collected during the winter SBT fishery seasons in 1992-94. Five net types (mouth opening 0 25 to -80 m') w~thcodend mesh sizes ranging from 100 to 1000 pm were used. Samples were collected from 4 main hydrographic areas: warm East Australian Current water, cool subantarctic water, the front separating them (the subtrop~calconvergence), and the adjacent shelf. Four depth strata (50, 150, 250 and 350 m) were also sampled. In contrast to our expectations, the biomass in the subtropical convergence was no greater than that in the 3 other areas. Rather, it was the shelf, albeit with some inconsistencies, that generally had the greatest biomass of both zooplankton and micronekton. Offshore, there was no s~gnificantdifference in the biomass of the depth strata sampled, although the biomass of gelatinous zooplankton in the surface waters increased during the study period.
    [Show full text]
  • New Perspectives on the Evolution of Protochordate Sensory and Locomotory Systems, and the Origin of Brains and Heads*
    doi 10.1098/rstb.2001.0974 New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads* Thurston C. Lacalli Biology Department, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2 ([email protected]) Cladistic analyses generally place tunicates close to the base of the chordate lineage, consistent with the assumption that the tunicate tail is primitively simple, not secondarily reduced from a segmented trunk. Cephalochordates (i.e. amphioxus) are segmented and resemble vertebrates in having two distinct loco- motory modes, slow for distance swimming and fast for escape, that depend on separate sets of motor neurons and muscle cells. The sense organs of both amphioxus and tunicate larvae serve essentially as navigational aids and, despite some uncertainty as to homologies, current molecular and ultrastructural data imply a close relationship between them. There are far fewer signs of modi¢cation and reduction in the amphioxus central nervous system (CNS), however, so it is arguably the closer to the ancestral condi- tion. Similarities between amphioxus and tunicate sense organs are then most easily explained if distance swimming evolved before and escape behaviour after the two lineages diverged, leaving tunicates to adopt more passive means of avoiding predation. Neither group has the kind of sense organs or sensory integration centres an organism would need to monitor predators, yet mobile predators with eyes were probably important in the early Palaeozoic. For a predator, improvements in vision and locomotion are mutually reinforcing. Both features probably evolved rapidly and together, in an `arms race'of eyes, brains and segments that left protochordates behind, and ultimately produced the vertebrate head.
    [Show full text]
  • Climate Change and Southern Ocean Resilience
    No.No. 52 5 l l JuneMay 20202021 POLARKENNAN PERSPECTIVES CABLE Adélie penguins on top of an ice flow near the Antarctic Peninsula. © Jo Crebbin/Shutterstock Climate Change and Southern Ocean Resilience REPORT FROM AN INTERDISCIPLINARY SCIENTIFIC WORKSHOP, MARCH 30, 2021 Andrea Capurroi, Florence Colleoniii, Rachel Downeyiii, Evgeny Pakhomoviv, Ricardo Rourav, Anne Christiansonvi i. Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future ii. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Antarctic and Southern Ocean Coalition iii. Australian National University iv. University of British Columbia v. Antarctic and Southern Ocean Coalition vi. The Pew Charitable Trusts CONTENTS I. INTRODUCTION BY EVAN T. BLOOM 3 II. EXECUTIVE SUMMARY 5 III. CLIMATE CHANGE AND SOUTHERN OCEAN RESILIENCE 7 A. CLIMATE CHANGE AND THE SOUTHERN OCEAN 7 B. CONNECTION OF REGIONAL SOUTHERN OCEAN PROCESS TO GLOBAL SYSTEMS 9 C. UNDERSTANDING PROCESS CHANGES IN THE SOUTHERN OCEAN 10 D. ANTARCTIC GOVERNANCE AND DECISION MAKING 15 E. CONCLUSION 18 F. REFERENCES 19 POLAR PERSPECTIVES 2 No. 5 l June 2021 I. INTRODUCTION BY EVAN T. BLOOM vii Fig 1: Southern Ocean regions proposed for protection A network of MPAs could allow for conservation of distinct areas, each representing unique ecosystems As the world prepares for the Glasgow Climate Change Conference in November 2021, there is considerable focus on the Southern Ocean. The international community has come to realize that the polar regions hold many of the keys to unlocking our understanding of climate-related phenomena - and thus polar science will influence policy decisions on which our collective futures depend.
    [Show full text]
  • (Cciea) California Current Ecosystem Status Report, 2020
    Agenda Item G.1.a IEA Team Report 2 March 2020 SUPPLEMENTARY MATERIALS TO THE CALIFORNIA CURRENT INTEGRATED ECOSYSTEM ASSESSMENT (CCIEA) CALIFORNIA CURRENT ECOSYSTEM STATUS REPORT, 2020 Appendix A LIST OF CONTRIBUTORS TO THIS REPORT, BY AFFILIATION NWFSC, NOAA Fisheries SWFSC, NOAA Fisheries Mr. Kelly Andrews Dr. Eric Bjorkstedt Ms. Katie Barnas Dr. Steven Bograd Dr. Richard Brodeur Ms. Lynn deWitt Dr. Brian Burke Dr. John Field Dr. Jason Cope Dr. Newell (Toby) Garfield (co-lead editor) Dr. Correigh Greene Dr. Elliott Hazen Dr. Thomas Good Dr. Michael Jacox Dr. Chris Harvey (co-lead editor) Dr. Andrew Leising Dr. Daniel Holland Dr. Nate Mantua Dr. Kym Jacobson Mr. Keith Sakuma Dr. Stephanie Moore Dr. Jarrod Santora Dr. Stuart Munsch Dr. Andrew Thompson Dr. Karma Norman Dr. Brian Wells Dr. Jameal Samhouri Dr. Thomas Williams Dr. Nick Tolimieri (co-editor) University of California-Santa Cruz Ms. Margaret Williams Ms. Rebecca Miller Dr. Jeannette Zamon Dr. Barbara Muhling Pacific States Marine Fishery Commission Dr. Isaac Schroeder Ms. Amanda Phillips Humboldt State University Mr. Gregory Williams (co-editor) Ms. Roxanne Robertson Oregon State University California Department of Public Health Ms. Jennifer Fisher Ms. Christina Grant Ms. Cheryl Morgan Mr. Duy Trong Ms. Samantha Zeman Ms. Vanessa Zubkousky-White AFSC, NOAA Fisheries California Department of Fish and Wildlife Dr. Stephen Kasperski Ms. Christy Juhasz Dr. Sharon Melin CA Office of Env. Health Hazard Assessment NOAA Fisheries West Coast Region Dr. Rebecca Stanton Mr. Dan Lawson Oregon Department of Fish and Wildlife Farallon Institute Dr. Caren Braby Dr. William Sydeman Mr. Matthew Hunter Point Blue Conservation Science Oregon Department of Agriculture Dr.
    [Show full text]
  • Redalyc.Record of the Rare Oceanic Salp Helicosalpa Komaii
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Hereu, Clara M.; Suárez-Morales, Eduardo; Lavaniegos, Bertha E. Record of the rare oceanic salp Helicosalpa komaii (Tunicata: Thaliacea: Salpida) in the Northeast Pacific Revista Mexicana de Biodiversidad, vol. 85, núm. 2, 2014, pp. 624-629 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42531364021 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad 85: 624-629, 2014 624 Hereu et al.- New record of Helicosalpa komaiiDOI: in 10.7550/rmb.36638 Northeast Pacific Research note Record of the rare oceanic salp Helicosalpa komaii (Tunicata: Thaliacea: Salpida) in the Northeast Pacific Registro de una especie oceánica rara de salpa Helicosalpa komaii (Tunicata: Thaliacea: Salpida) en el Pacífico nororiental Clara M. Hereu1 , Eduardo Suárez-Morales2 and Bertha E. Lavaniegos3 1Facultad de Ciencias, Universidad Autónoma de Baja California. Carretera Tijuana-Ensenada, Km 103, 22860 Ensenada, Baja California, Mexico. 2Departamento de Ecología y Sistemática Acuática, El Colegio de la Frontera Sur. Av. Centenario, Km 5.5, 77014 Chetumal, Quintana Roo, Mexico. 3Departamento de Oceanografía Biológica, Centro de Investigación y de Educación Superior de Ensenada. Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico. [email protected] Abstract. We report for the first time the presence of a rare salp Helicosalpa komaii (Ihle and Ihle-Landenberg, 1936) on the west coast of Baja California peninsula (26°52.7’ N, 117°09.2’ W).
    [Show full text]