5 Drivers, Trends and Mitigation

Total Page:16

File Type:pdf, Size:1020Kb

5 Drivers, Trends and Mitigation 5 Drivers, Trends and Mitigation Coordinating Lead Authors: Gabriel Blanco (Argentina), Reyer Gerlagh (Netherlands), Sangwon Suh (Republic of Korea / USA) Lead Authors: John Barrett (UK), Heleen C. de Coninck (Netherlands), Cristobal Felix Diaz Morejon (Cuba), Ritu Mathur (India), Nebojsa Nakicenovic (IIASA / Austria / Montenegro), Alfred Ofosu Ahenkorah (Ghana), Jiahua Pan (China), Himanshu Pathak (India), Jake Rice (Canada), Richard Richels (USA), Steven J. Smith (USA), David I. Stern (Australia), Ferenc L. Toth (IAEA / Hungary), Peter Zhou (Botswana) Contributing Authors: Robert Andres (USA), Giovanni Baiocchi (UK / Italy), William Michael Hanemann (USA), Michael Jakob (Germany), Peter Kolp (IIASA / Austria), Emilio la Rovere (Brazil), Thomas Michielsen (Netherlands / UK), Keisuke Nansai (Japan), Mathis Rogner (Austria), Steven Rose (USA), Estela Santalla (Argentina), Diana Ürge-Vorsatz (Hungary), Tommy Wiedmann (Germany / Australia), Thomas Wilson (USA) Review Editors: Marcos Gomes (Brazil), Aviel Verbruggen (Belgium) Chapter Science Assistants: Joseph Bergesen (USA), Rahul Madhusudanan (USA) This chapter should be cited as: Blanco G., R. Gerlagh, S. Suh, J. Barrett, H. C. de Coninck, C. F. Diaz Morejon, R. Mathur, N. Nakicenovic, A. Ofosu Ahenkora, J. Pan, H. Pathak, J. Rice, R. Richels, S. J. Smith, D. I. Stern, F. L. Toth, and P. Zhou, 2014: Drivers, Trends and Mitigation. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 351 Drivers, Trends and Mitigation Chapter 5 Contents Executive Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 354 5 5�1 Introduction and overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 356 5�2 Global trends in stocks and flows of greenhouse gases and short-lived species � � � � � � � � � � � � � � � � 357 5�2�1 Sectoral and regional trends in GHG emissions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 357 5�2�2 Trends in aerosols and aerosol / tropospheric ozone precursors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 360 5�2�3 Emissions uncertainty � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 361 5.2.3.1 Methods for emissions uncertainty estimation ��������������������������������������������������������������������������������������������������������������361 5.2.3.2 Fossil carbon dioxide emissions uncertainty ��������������������������������������������������������������������������������������������������������������������361 5.2.3.3 Other greenhouse gases and non-fossil fuel carbon dioxide ����������������������������������������������������������������������������������363 5.2.3.4 Total greenhouse gas uncertainty ������������������������������������������������������������������������������������������������������������������������������������������363 5.2.3.5 Sulphur dioxide and aerosols ��������������������������������������������������������������������������������������������������������������������������������������������������363 5.2.3.6 Uncertainties in emission trends ��������������������������������������������������������������������������������������������������������������������������������������������363 5.2.3.7 Uncertainties in consumption-based carbon dioxide emission accounts ����������������������������������������������������������364 5�3 Key drivers of global change � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 364 5�3�1 Drivers of global emissions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 364 5.3.1.1 Key drivers ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������365 5�3�2 Population and demographic structure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 368 5.3.2.1 Population trends ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������368 5.3.2.2 Trends in demographic structure ��������������������������������������������������������������������������������������������������������������������������������������������369 5�3�3 Economic growth and development � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 371 5.3.3.1 Production trends ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������371 5.3.3.2 Consumption trends ��������������������������������������������������������������������������������������������������������������������������������������������������������������������373 5.3.3.3 Structural change ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������375 5�3�4 Energy demand and supply � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 375 5.3.4.1 Energy demand ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������375 5.3.4.2 Energy efficiency and Intensity ����������������������������������������������������������������������������������������������������������������������������������������������376 5.3.4.3 Carbon-intensity, the energy mix, and resource availability ������������������������������������������������������������������������������������378 5�3�5 Other key sectors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 380 5.3.5.1 Transport ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������380 5.3.5.2 Buildings ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������383 5.3.5.3 Industry ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������383 5.3.5.4 Agriculture, Forestry, Other Land Use ��������������������������������������������������������������������������������������������������������������������������������383 5.3.5.5 Waste ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������385 352 Chapter 5 Drivers, Trends and Mitigation 5�4 Production and trade patterns � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 385 5�4�1 Embedded carbon in trade � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 385 5�4�2 Trade and productivity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 386 5 5�5 Consumption and behavioural change � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 387 5�5�1 Impact of behaviour on consumption and emissions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 387 5�5�2 Factors driving change in behaviour � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 388 5�6 Technological change � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 389 5�6�1 Contribution of
Recommended publications
  • Greenhouse Gas Emissions from Public Lands
    The Climate Report 2020: Greenhouse Gas Emissions from Public Lands As the world works to respond to the dire regulations meant to protect the public and the warnings issued last fall by the United Nations environment from these exact decisions. New Environment Programme, the Trump policies have made it cheaper and easier for administration continues to open up as much fossil energy corporations to gain and hold of our shared public lands as possible to fossil control of public lands. And they have hidden fuel extraction.1 And while doing so, the federal from public view the implications of these government continues to keep the public (aka decisions for taxpayers and the planet. the owners of these resources) in the dark on This report seeks to pull the curtain back on the mounting greenhouse gas emissions that this situation and shed light on the range of would result from drilling on our public lands. potential climate consequences of these At the same time, we’ve seen this leasing decisions. administration water down policies and 1 UN. 26 Nov. 2019. stories/press-release/cut-global-emissions-76- https://www.unenvironment.org/news-and- percent-every-year-next-decade-meet-15degc Key Takeaways: The federal government cannot manage development of these leases could be as what it does not measure, yet the Trump high as 6.6 billion MT CO2e. administration is actively seeking to These leasing decisions have significant suppress disclosure of climate emissions and long-term ramifications for our climate from fossil energy leases on public lands. and our ability to stave off the worst The leases issued during the Trump impacts of global warming.
    [Show full text]
  • The Kyoto Protocol and Greenhouse Gas Emissions
    THE KYOTO PROTOCOL AND GREENHOUSE GAS EMISSIONS NOVEMBER 1999 Paper prepared by the Chamber of Commerce and Industry of WA Kyoto and the Enhanced Greenhouse Effect Table of Contents INTRODUCTION AND SUMMARY ......................................................................................1 Introduction and Caveats .......................................................................................................1 Summary................................................................................................................................2 Key Recommendations.......................................................................................................2 BACKGROUND: THE KYOTO PROTOCOL.........................................................................4 ISSUES, PROCESSES AND IMPLICATIONS .......................................................................5 Political Structures and Incentives.........................................................................................5 National Solutions to Global Problems..................................................................................6 Equity and Universality .......................................................................................................10 Conclusions on Kyoto And Global Warming ......................................................................11 POLICY IMPLICATIONS AND PRINCIPLES.....................................................................13 An Effective Global Emissions Policy.................................................................................13
    [Show full text]
  • Lasting Coastal Hazards from Past Greenhouse Gas Emissions COMMENTARY Tony E
    COMMENTARY Lasting coastal hazards from past greenhouse gas emissions COMMENTARY Tony E. Wonga,1 The emission of greenhouse gases into Earth’satmo- 100% sphereisaby-productofmodernmarvelssuchasthe Extremely likely by 2073−2138 production of vast amounts of energy, heating and 80% cooling inhospitable environments to be amenable to human existence, and traveling great distances 60% Likely by 2064−2105 faster than our saddle-sore ancestors ever dreamed possible. However, these luxuries come at a price: 40% climate changes in the form of severe droughts, ex- Probability treme precipitation and temperatures, increased fre- 20% quency of flooding in coastal cities, global warming, RCP2.6 and sea-level rise (1, 2). Rising seas pose a severe risk RCP8.5 0% to coastal areas across the globe, with billions of 2020 2040 2060 2080 2100 2120 2140 US dollars in assets at risk and about 10% of the ’ Year when 50-cm sea-level rise world s population living within 10 m of sea level threshold is exceeded (3–5). The price of our emissions is not felt immedi- ately throughout the entire climate system, however, Fig. 1. Cumulative probability of exceeding 50 cm of sea-level rise by year (relative to the global mean sea because processes such as ice sheet melt and the level from 1986 to 2005). The yellow box denotes the expansion of warming ocean water act over the range of years after which exceedance is likely [≥66% course of centuries. Thus, even if all greenhouse probability (12)], where the left boundary follows a gas emissions immediately ceased, our past emis- business-as-usual emissions scenario (RCP8.5, red line) sions have already “locked in” some amount of con- and the right boundary follows a low-emissions scenario (RCP2.6, blue line).
    [Show full text]
  • Kaya Identity» Can Estimate GHG Emissions: a Global Review Azadeh Tavakoli*
    Volume 8, (Number 2), Dec, 2017 ISSN 1995-6681 JJEES Pages 91 - 96 Jordan Journal of Earth and Environmental Sciences How Precisely «Kaya Identity» Can Estimate GHG Emissions: A Global Review Azadeh Tavakoli* Assistant Professors, Civil & Environmental Engineering, Department of Environmental Sciences, University of Zanjan, Zanjan, Iran Received 27 May, 2017; Accepted 25 August, 2017 Abstract Climate change is the greatest environmental threat facing our planet, endangering health, communities, economy and national security. Many models tried to evaluate influencing factors, estimate emission rates or any parameter can effect on this phenomena. «Kaya identity» is a mathematical equation that relates economic, demographic and environmental factors to estimate anthropogenic emissions in global scale. In the present study, «Kaya identity» is developed for 215 countries around the world (national scale) during 1990-2011. Then model predictions are compared with real data to evaluate how well Kaya identity can estimate emissions and how results accuracy changed over time. Based on the results, energy intensity and carbon intensity follow a decline; population and Gross Domestic Product (GDP) per capita follow an increasing path. More than 80% of emissions, about 74% of GDP and 52% of the population around the world can be estimated precisely (< 20% error) by Kaya identity. The model predictions show an improvement in accuracy of results over time. Eight out of top ten emitter countries could be estimated well (usually between -20% < error < +20%) by Kaya identity from emission point of view. Results confirm that Kaya identity can be used widely and reliably for estimation of emissions and identification of effective factors globally to help in achieving emission reduction targets by helping governments to better predict emission rates.
    [Show full text]
  • Aggregate Emission Intensity Targets: Applications to the Paris Agreement
    ADBI Working Paper Series AGGREGATE EMISSION INTENSITY TARGETS: APPLICATIONS TO THE PARIS AGREEMENT Jinhua Zhao No. 813 March 2018 Asian Development Bank Institute Jinhua Zhao is a professor and director at the Department of Economics, Department of Agricultural, Food and Resource Economics, and the Environmental Science and Policy Program, Michigan State University. The views expressed in this paper are the views of the author and do not necessarily reflect the views or policies of ADBI, ADB, its Board of Directors, or the governments they represent. ADBI does not guarantee the accuracy of the data included in this paper and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms. Working papers are subject to formal revision and correction before they are finalized and considered published. The Working Paper series is a continuation of the formerly named Discussion Paper series; the numbering of the papers continued without interruption or change. ADBI’s working papers reflect initial ideas on a topic and are posted online for discussion. Some working papers may develop into other forms of publication. Suggested citation: J. Zhao. 2018. Aggregate Emission Intensity Targets: Applications to the Paris Agreement. ADBI Working Paper 813. Tokyo: Asian Development Bank Institute. Available: https://www.adb.org/publications/aggregate-emission-intensity-targets-applications-paris- agreement Please contact the authors for information about this paper. Email: [email protected] Asian Development Bank Institute Kasumigaseki Building, 8th Floor 3-2-5 Kasumigaseki, Chiyoda-ku Tokyo 100-6008, Japan Tel: +81-3-3593-5500 Fax: +81-3-3593-5571 URL: www.adbi.org E-mail: [email protected] © 2018 Asian Development Bank Institute Aggregate Emission Intensity Targets: Applications to the Paris Agreement Jinhua Zhao1 February 18, 2018 1Department of Economics, Department of Agricultural, Food and Resource Economics, and the Envi- ronmental Science and Policy Program, Michigan State University.
    [Show full text]
  • Greenhouse Gas Inventory a Community-Wide and Municipal Operations Greenhouse Gas Inventory for 2015
    Greenhouse Gas Inventory A community-wide and municipal operations greenhouse gas inventory for 2015 City of Lancaster Department of Public Works – Douglas Smith October 2017 Acknowledgement Thank you to all of the City Staff who helped compile data for both the greenhouse gas inventories included herein, including Charlotte Katzenmoyer (City Director of Public Works), Donna Jessup (City operations), Dave Schaffhauser (City Facilities Manager), Bryan Harner (City Wastewater), John Holden (City Water), Tim Erb (City Fire), and Maria Luciano (City Operations). Thank you to the Stormwater Bureau’s 2016-2017 F&M intern, JT Paganelli, who completed the vehicle emissions inventory, and the 2017 F&M intern, Grant Salley, for assisting with editing and research. Thank you to Barbara Baker from the Lancaster County Solid Waste Management Authority for providing data on solid waste. Additional thanks to customer service representatives at PPL and UGI, Scott Koch and Lori Pepper, respectively, for assisting with data. Recognition also goes to Warwick Township and Tony Robalik AICP who conducted the first municipal carbon audit in Lancaster County, which provided a model and helpful background information for this document. 2 Contents INTRODUCTION .........................................................................................................................................................5 1.1 Global Context .............................................................................................................................................................
    [Show full text]
  • Science-Based Target Setting Manual Version 4.1 | April 2020
    Science-Based Target Setting Manual Version 4.1 | April 2020 Table of contents Table of contents 2 Executive summary 3 Key findings 3 Context 3 About this report 4 Key issues in setting SBTs 5 Conclusions and recommendations 5 1. Introduction 7 2. Understand the business case for science-based targets 12 3. Science-based target setting methods 18 3.1 Available methods and their applicability to different sectors 18 3.2 Recommendations on choosing an SBT method 25 3.3 Pros and cons of different types of targets 25 4. Set a science-based target: key considerations for all emissions scopes 29 4.1 Cross-cutting considerations 29 5. Set a science-based target: scope 1 and 2 sources 33 5.1 General considerations 33 6. Set a science-based target: scope 3 sources 36 6.1 Conduct a scope 3 Inventory 37 6.2 Identify which scope 3 categories should be included in the target boundary 40 6.3 Determine whether to set a single target or multiple targets 42 6.4 Identify an appropriate type of target 44 7. Building internal support for science-based targets 47 7.1 Get all levels of the company on board 47 7.2 Address challenges and push-back 49 8. Communicating and tracking progress 51 8.1 Publicly communicating SBTs and performance progress 51 8.2 Recalculating targets 56 Key terms 57 List of abbreviations 59 References 60 Acknowledgments 63 About the partner organizations in the Science Based Targets initiative 64 Science-Based Target Setting Manual Version 4.1 -2- Executive summary Key findings ● Companies can play their part in combating climate change by setting greenhouse gas (GHG) emissions reduction targets that are aligned with reduction pathways for limiting global temperature rise to 1.5°C or well-below 2°C compared to pre-industrial temperatures.
    [Show full text]
  • Consumption-Based Accounting of CO2 Emissions Steven J
    Consumption-based accounting of CO2 emissions Steven J. Davis1 and Ken Caldeira Department of Global Ecology, Carnegie Institution of Washington, Stanford, CA 94305 Edited by William C. Clark, Harvard University, Cambridge, MA, and approved January 29, 2010 (received for review June 23, 2009) CO2 emissions from the burning of fossil fuels are the primary the United Nations Framework Convention on Climate Change cause of global warming. Much attention has been focused on (10) account for only those emissions produced within sovereign fi the CO2 directly emitted by each country, but relatively little atten- territories (FPr), ignoring the bene t conveyed to consumers tion has been paid to the amount of emissions associated with through international trade. In recognition of this shortcoming, a the consumption of goods and services in each country. Consump- number of studies over the past decade have sought to compare tion-based accounting of CO2 emissions differs from traditional, production- and consumption-based emissions inventories (for a production-based inventories because of imports and exports of comprehensive, up-to-date review, see ref. 11). Recent studies goods and services that, either directly or indirectly, involve CO2 have quantified the emissions “embodied” in global trade (i.e., emissions. Here, using the latest available data, we present a emitted during the production and transport of traded goods and global consumption-based CO2 emissions inventory and calcula- services) among 87 regions in 2001 (12, 13). Here, we present tions of associated consumption-based energy and carbon inten- results from a fully coupled multiregional input–output (MRIO) sities. We find that, in 2004, 23% of global CO2 emissions, or 6.2 model constructed from 2004 global economic data disaggregated gigatonnes CO2, were traded internationally, primarily as exports into 113 countries/regions and 57 industry sectors.
    [Show full text]
  • AN ACT Relating to Reducing Greenhouse Gas Emissions from 1
    H-0017.2 HOUSE BILL 1050 State of Washington 67th Legislature 2021 Regular Session By Representatives Fitzgibbon, Ortiz-Self, Leavitt, Duerr, Chopp, Ramel, Peterson, Goodman, Ryu, Callan, Ramos, Ormsby, Pollet, Stonier, Fey, Macri, and Bergquist Prefiled 12/23/20. Read first time 01/11/21. Referred to Committee on Environment & Energy. 1 AN ACT Relating to reducing greenhouse gas emissions from 2 fluorinated gases; amending RCW 70A.15.6410, 70A.15.6420, 3 70A.15.6430, 70A.45.080, 19.27.580, 70A.15.3150, 70A.15.3160, 4 19.285.040, 19.27A.220, and 39.26.310; reenacting and amending RCW 5 70A.45.010; adding a new chapter to Title 70A RCW; creating a new 6 section; and recodifying RCW 70A.45.080, 70A.15.6410, 70A.15.6420, and 70A.15.6430.7 8 BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF WASHINGTON: 9 NEW SECTION. Sec. 1. (1) The legislature finds that 10 hydrofluorocarbons are air pollutants that pose significant threats 11 to our environment. Although hydrofluorocarbons currently represent a 12 small proportion of the state's greenhouse gas emissions, emissions 13 of hydrofluorocarbons have been rapidly increasing in the United 14 States and worldwide, and they are hundreds to thousands of times 15 more potent than carbon dioxide. In 2019, the legislature took a 16 significant step towards reducing greenhouse gas emissions from 17 hydrofluorocarbons by transitioning to the use of less damaging 18 hydrofluorocarbons or suitable substitutes in certain new foam, 19 aerosol, and refrigerant uses. However, significant sources of 20 hydrofluorocarbon emissions in Washington remain unaddressed by the 21 2019 legislation, including legacy uses of hydrofluorocarbons as a p.
    [Show full text]
  • JSP 418 Leaflet 6 Fluorinated Greenhouse Gases Version
    Management of Environmental Protection in Leaflet 6 JSP 418 Defence FLUORINATED GREENHOUSE GASES Contents Para 1 Introduction Policies 12 International Policy – The UN Framework Convention on Climate Change 15 European Union Policy 17 UK Government Policy 23 MOD Policy Legislation 25 International legislation 45 UK Legislation Procedures for Implementation of MOD Policy 49 Policy Development and Implementation Management Responsibilities 51 Responsibilities of Users 52 Responsibilities of MOD Re-Supplier (reselling to MOD purchasers) 55 Training 73 Restrictions on New Uses 77 Restrictions on Existing Uses 79 Alternative Substances and Methods 80 Responsible Management 83 Servicing Requirements 86 Reporting Requirements 89 Disposal of Recovered and Unwanted Fluorinated Greenhouse Gases 91 Further Guidance Annexes A Definitions from Regulation (EU) No 517/2014 B Placing on the market prohibitions in accordance with Article 9 of Regulation EC842/2006 C Common and Trade Names of Products That May Contain Fluorinated Greenhouse Gases D Assurance Questions May 2016 Leaflet 6 Page 1 Management of Environmental Protection in Leaflet 6 JSP 418 Defence INTRODUCTION Aim 1. The aim of this leaflet is to deliver MOD policy requirements on the use, containment and recovery of fluorinated greenhouse gases (F gases). It also outlines the latest legislative position and the substances whose use and applications are now prohibited. Scope 2. This leaflet applies to all personnel including Project Team Leaders, Project Sponsors, Equipment, Property and Facilities Managers and others (including Regional Prime Contractors RPCs, Private Partners and other such contractors who operate and use equipment containing fluorinated greenhouse gases. This includes those who take the role of undertakings1 and/or a Responsible Authority2 who manages such undertakings and operate equipment or facilities.
    [Show full text]
  • Avoiding Fluorinated Greenhouse Gases Prospects for Phasing Out
    | CLIMATE CHANGE | 08/2011 Avoiding Fluorinated Greenhouse Gases Prospects for Phasing Out | CLIMATE CHANGE | 08/2011 Avoiding Fluorinated Greenhouse Gases Prospects for Phasing Out by Katja Becken Dr. Daniel de Graaf Dr. Cornelia Elsner Gabriele Hoffmann Dr. Franziska Krüger Kerstin Martens Dr. Wolfgang Plehn Dr. Rolf Sartorius German Federal Environment Agency (Umweltbundesamt) UMWELTBUNDESAMT This publication is only available online. It can be downloaded from http://www.uba.de/uba-info-medien-e/3977.html along with a German version. Revised version of the report “Fluorinated Greenhouse Gases in Products and Processes – Technical Climate Protection Measures”, German Federal Environment Agency, Berlin 2004 Translation of the German-language report, November 2010 ISSN 1862-4359 Publisher: Federal Environment Agency (Umweltbundesamt) Wörlitzer Platz 1 06844 Dessau-Roßlau Germany Phone: +49-340-2103-0 Fax: +49-340-2103 2285 Email: [email protected] Internet: http://www.umweltbundesamt.de http://fuer-mensch-und-umwelt.de/ Edited by: Section III 1.4 Substance-related Product Issues Katja Becken, Dr. Wolfgang Plehn Dessau-Roßlau, June 2011 Foreword Fluorinated greenhouse gases (F-gases) are 100 to 24,000 times more harmful to the climate than CO2. The contribution of fluorinated greenhouse gases to global warming is projected to triple from nearly 2% to around 6% of total greenhouse gas emissions by the year 2050. This is revealed by global projections prepared for the Federal Environment Agency in a scenario where no new measures are taken. The need for action is evident. F-gases are mostly used in similar ways to the CFCs and halons used in the past, which are responsible for the destruction of the ozone layer in the stratosphere.
    [Show full text]
  • Greenhouse Gas Emissions from Pig and Chicken Supply Chains – a Global Life Cycle Assessment
    Greenhouse gas emissions from pig and chicken supply chains A global life cycle assessment Greenhouse gas emissions from pig and chicken supply chains A global life cycle assessment A report prepared by: FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Animal Production and Health Division Recommended Citation MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B. & Steinfeld, H. 2013. Greenhouse gas emissions from pig and chicken supply chains – A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reect the views or policies of FAO. E-ISBN 978-92-5-107944-7 (PDF) © FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]