Review Cell Fusion and Some Subcellular Properties Of
REVIEW CELL FUSION AND SOME SUBCELLULAR PROPERTIES OF HETEROKARYONS AND HYBRIDS SAIMON GORDON From the Genetics Laboratory, Department of Biochemistry, The University of Oxford, England, and The Rockefeller University, New York 10021 I. INTRODUCTION The technique of somatic cell fusion has made it first cell hybrids obtained by this method. The iso- possible to study cell biology in an unusual and lation of hybrid cells from such mixed cultures direct way. When cells are mixed in the presence of was greatly facilitated by the Szybalski et al. (6) Sendai virus, their membranes coalesce, the cyto- and Littlefield (7, 8) adaptation of a selective me- plasm becomes intermingled, and multinucleated dium containing hypoxanthine, aminopterin, and homo- and heterokaryons are formed by fusion of thymidine (HAT) to mammalian systems. similar or different cells, respectively (1, 2). By Further progress followed the use of Sendai fusing cells which contrast in some important virus by Harris and Watkins to increase the biologic property, it becomes possible to ask ques- frequency of heterokaryon formation (9). These tions about dominance of control processes, nu- authors exploited the observation by Okada that cleocytoplasmic interactions, and complementa- UV irradiation could be used to inactivate Sendai tion in somatic cell heterokaryons. The multinucle- virus without loss of fusion efficiency (10). It was ate cell may divide and give rise to mononuclear therefore possible to eliminate the problem of virus cells containing chromosomes from both parental replication in fused cells. Since many cells carry cells and become established as a hybrid cell line receptors for Sendai virus, including those of able to propagate indefinitely in vitro.
[Show full text]