Prenatal and Postnatal Development of the Rat Hippocampus (Histological Study)

Total Page:16

File Type:pdf, Size:1020Kb

Prenatal and Postnatal Development of the Rat Hippocampus (Histological Study) MJMR, Vol. 25, No. 2, 2024, pages (224-225). Kamel et al., Research Article Prenatal and Postnatal Development of the Rat Hippocampus (Histological Study) Maher M. Kamel, Mohamed M. Abdelaleem, Moustafa A. Saad and Sayed F. El-Sheikh Department of Anatomy, Minia Faculty of Medicine Abstract The differentiation of the hippocampus starts in the subiculum and proceeds towards the Ammon's horn and the dentate gyrus is the last structure to be formed. Lamination of the subiculum starts on E71 and progress to the Ammon's horn on E71; CA7 is formed, while the CA3 is not completely developed. On E71, the CA3 is completed with formation the ectal limb of dentate gyrus while the endal limb is still unformed and appears as a ball-like mass of cells. Between E02-P7, Ammon's horn shows agreat increase in length as acurved C-shape structure. The endal limb of dentate gyrus appears prenatally and develops rapidly to become morphologically similar to the ectal limb by P1. During the first month of development, there are increases in length of Ammon's horn, dentate gyrus size and size of both pyramidal cells and granule cells. In adult, the length of Ammon's horn is markedly large and the hippocampal subfields are prominent. Key Words: Development, Hippocampus, Ammon's horn and dentate gyrus Introduction constitute the circuit of emotion. In 7180 Pallium (the cerebral cortex) coats the Maclean named this circuit the "limbic surface of cerebral hemispheres. The system"(72). cerebral cortex is divided according the development level, structure and function This study aimed to identify the into six- layered neocortex and three- morphological changes of both layered allocortex. The hippocampus is the cornuAmmonis and dentate gyrus in best example for allocortex. The consequent ages during embryological and periallocortex or mesocortex are used to postnatal development and analyze these mark the transitional zone between the differences in a functional context. It is neocortex and allocrtex(1). necessary to have the anatomical base of this region by simple microscopic study of The hippocampus was first described by the rat hippocampus using rapid and easy Arantius (7811) in his book "De method (H & E).This method can identify HumanoFoetu" the structure in the temporal layers, pyramidal cells of cornuammonis horn of the lateral ventricles that looks and granule cells of dentate gyrus. likehippocampus (sea horse) or bombycinusvermiscandidus (white silk Materials and methods worm),(78). Twenty four pairs of male and female albino rats were used in the present study. In 7177, Ramóny Cajal and lorente de Nó The rats were put in separate cages, each used Gogi's technique in studying the contained one male and one female rat. cellular architecture of hippocampal They were kept for mating for 09 hours. formation(1179). The next day, female rats were examined for vaginal plug of semen. The first day of In 7131, Papez described his circuit and the conception was determined if the vaginal hippocampus was one of the structures plug is positive and considered to be integrated in(70). He suggested that it might E7.Pregnant female rats were kept separate 114 Prenatal and Postnatal Development of the Rat MJMR, Vol. 25, No. 2, 2024, pages (224-225). Kamel et al., in cages and were followed up for development would be following up to pregnancy dating. From E71-E07, two or reach the final appearance.It is formed of more pregnant rats were taken for each day two major parts, the cornuammonis and the of age, and then sacrificed by decapitation. dentate gyrus. Both structures are curved; The abdomen and the uterus were opened the terminal part of cornuammonis is up, and then the embryos were removed, directed into the concavity of dentate gyrus; heads were separated and injected by Bouin (the hilum). fixative through making pores at the margin of skull cap.From postnatal ages P7, P1, The coruammonis appears as a column of P79, P07, P32 and >P12 (adult), three rats less densely packed, randomly oriented were taken for each age and sacrificed by cells lie adjacent to the tightly packed, decapitation. The skulls were opened and radially oriented neuro-epithelium. The the brains were extracted for removal of subfields of cornuammonisare difficult to hippocampus in the following steps: be identified. The boundary between the 7) In order to expose the hippocampus we subiculum and conruammonis is not recog- need to remove the cerebral cortex nizable. The cells of cornuammonis appear covering it. The first incision is at the end small with small deeply pigmented nuclei. of the hemisphere; the incision should be about 2.1mm deep for adult mouse that The dentate gyrus starts to appear as a not to hurt the hippocampus while to collection of young nerve cells migrating expose it (the incision depth is reduced to from the neuro-epithelium near the 2.0 mm in one day old rat). The 0nd outgrowth of the chorid plexus to a subpial incision is about 7.8-0mm in front of the area in the concavity formed by the neuro- first one, this incision we cut into the epithelium of cornuammonis at its ventral lateral ventricle, both of the incisions go end. to the ventral of the brain and meet there. This piece of cortex is free, after pulling it On E71, the coruammonis is seen to make up, we will see the hippocampus. more arching towards the lateral ventricle 0) On the other side of the brain, both the and temporal cortex, the stratum oriens and sides of the cortex are pulled up that stratum radiatum appear to be formed but covering the hippocampus along the they are thin. The cells appear small and ventricle. Now we can see the dorsal part rounded with deeply pigmented nuclei. of the hippocampus. 3) The rest of the hippocampus is The dentate gyrusarea appeared larger than separated from the cortex covering it the previous age. Cells of the dentate gyrus along the surface of the hippocampus are closely packed in a ball- like subpial towards the ventral part of the mass. The limbs are not formed yet. hippocampus. 9) The hippocampus picked out from the On E71, the cornuammonis appears as a brain. small C- shaped structure, bulging laterally, Either the head (E71-E07), or the towards the cavity of lateral ventricle, hippocampus (P7-adult), was kept in making two limbs, the prominent superior Bouin's fixative for 09 hours, and then limb is continuous with the cortex is called transferred to 721 neutral formalin. All CA7 and faint, uncompleted inferior limb specimens were embedded in paraffin. growing towards the hilum of dentate gyrus Serial sections (1 µm) were prepared in is called CA3. The fimbria rises below the the coronal plane for Haematoxylin and point of meeting between the two limbs of Eosin staining. CA. The hippocampal subfields are well apparent, from ventricular side outwards; Results neuro-epithelium, large sub-ependymal 2) Prenatal ages: (Fig. 2- 4) zone, stratum oriens, pyramidal layer and The hippocampus proper starts to appear by stratum radiatum. The thickness of neuro- the 71th day of intra-utrine life and its epithelium is apparently diminished than 115 Prenatal and Postnatal Development of the Rat MJMR, Vol. 25, No. 2, 2024, pages (224-225). Kamel et al., the previous age with appearance of large layers than CA3, nuclei are vesicular. Cells sub-ependimal zone containing radially of CA3 are larger than CA7. The dentate oriented neuroblasts towards the Cornu gyrus appears as larger mass of cells with Ammonis. The sub-ependymal zone is starting formation of ectal limb of the present throughout the length of granular cell layer that appear superficial to hippocampus, larger towards the subiculum the dentate hilus, less dense with deep than towards Ammon's horn. The cells nuclei and their apical dendrites extending acquire the characteristic pyramidal towards the molecular layer. The remaining appearance starting by this age, with apical cells of the dentate gyrus below the hilus dendrites towards the stratum radiatum. are densely packed with deep nuclei. Cells of CA7 are small, forming more 116 Prenatal and Postnatal Development of the Rat MJMR, Vol. 25, No. 2, 2024, pages (224-225). Kamel et al., On E71, the cornuammonisappears larger vesicular with prominent nucleoli. Cells of C- shaped structure. The CA3 part is CA3 are arranged from 3 to 8 layers, larger completed towards the dentate hilus. The in size with thicker apical dendrites. The subfields of CA could be seen with great dentate gyrus is formed of two limbs; the apparent change in thickness, the neuro- supra-pyramidal (ectal) limb, which appears epithelium layer is thin, sub-ependymal more developed; cells are arranged in layers layer is contracted, pyramidal layer is and larger than the newly formed infra- thickened and stratum radiatum is markedly pyramidal (endal) limb which appears as a enlarged. The dominant neurons in the collection of densely packed cells. The hippocampus proprius are the pyramidal chief cells of the dentate gyrus are the cells. The size and the density of these granular neurons and so, the 3 layers of neurons are variable throughout the CA. dentate gyrus are apparent in the supra- pyramidal cells show marked increase in pyramidal limb, the most superficial layer is apparent size than the previous age. Cells of the molecular layer; the next granule cell the pyramidal layer of CA7 arranged from layer in which granule cells are rounded 8 to 1 layers, with prominent apical with pale nuclei, and the polymorphic layer dendrites that extended to stratum radiatum that related to dentate gyrus hilum and and stratum lacunosum. The nuclei are characterized by presence of large Mossy 111 Prenatal and Postnatal Development of the Rat MJMR, Vol.
Recommended publications
  • 1 Neuronal Distribution Across the Cerebral Cortex of the Marmoset
    bioRxiv preprint doi: https://doi.org/10.1101/385971; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Neuronal distribution across the cerebral cortex of the marmoset monkey (Callithrix jacchus) Nafiseh Atapour1, 2*, Piotr Majka1-3*, Ianina H. Wolkowicz1, Daria Malamanova1, Katrina H. Worthy1 and Marcello G.P. Rosa1,2 1 Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia 2 Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia 3 Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland * N.A. and P.M contributed equally to this study, and should be considered joint first authors Abbreviated title: Neuronal distribution in the marmoset cortex Number of pages: 43 Number of figures: 12 Number of tables: 4 Number of supplementary figures: 7 Number of supplementary tables: 2 Corresponding author: Marcello G.P. Rosa Email: [email protected] Conflicts of interests: The authors declare there is no conflict of interest. bioRxiv preprint doi: https://doi.org/10.1101/385971; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
    Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925).
    [Show full text]
  • Neocortex and Allocortex Respond Differentially to Cellular Stress in Vitro and Aging in Vivo
    Neocortex and Allocortex Respond Differentially to Cellular Stress In Vitro and Aging In Vivo Jessica M. Posimo, Amanda M. Titler, Hailey J. H. Choi, Ajay S. Unnithan, Rehana K. Leak* Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States of America Abstract In Parkinson’s and Alzheimer’s diseases, the allocortex accumulates aggregated proteins such as synuclein and tau well before neocortex. We present a new high-throughput model of this topographic difference by microdissecting neocortex and allocortex from the postnatal rat and treating them in parallel fashion with toxins. Allocortical cultures were more vulnerable to low concentrations of the proteasome inhibitors MG132 and PSI but not the oxidative poison H2O2. The proteasome appeared to be more impaired in allocortex because MG132 raised ubiquitin-conjugated proteins and lowered proteasome activity in allocortex more than neocortex. Allocortex cultures were more vulnerable to MG132 despite greater MG132-induced rises in heat shock protein 70, heme oxygenase 1, and catalase. Proteasome subunits PA700 and PA28 were also higher in allocortex cultures, suggesting compensatory adaptations to greater proteasome impairment. Glutathione and ceruloplasmin were not robustly MG132-responsive and were basally higher in neocortical cultures. Notably, neocortex cultures became as vulnerable to MG132 as allocortex when glutathione synthesis or autophagic defenses were inhibited. Conversely, the glutathione precursor N-acetyl cysteine rendered allocortex resilient to MG132. Glutathione and ceruloplasmin levels were then examined in vivo as a function of age because aging is a natural model of proteasome inhibition and oxidative stress. Allocortical glutathione levels rose linearly with age but were similar to neocortex in whole tissue lysates.
    [Show full text]
  • The Structural Model: a Theory Linking Connections, Plasticity, Pathology, Development and Evolution of the Cerebral Cortex
    Brain Structure and Function https://doi.org/10.1007/s00429-019-01841-9 REVIEW The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex Miguel Ángel García‑Cabezas1 · Basilis Zikopoulos2,3 · Helen Barbas1,3 Received: 11 October 2018 / Accepted: 29 January 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices—which form a ring at the base of the cerebral hemisphere—are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Cortical Connections Position Primate Area 25 As a Keystone for Interoception, Emotion, and Memory
    The Journal of Neuroscience, February 14, 2018 • 38(7):1677–1698 • 1677 Systems/Circuits Cortical Connections Position Primate Area 25 as a Keystone for Interoception, Emotion, and Memory X Mary Kate P. Joyce1,2 and XHelen Barbas1,2 1Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, Massachusetts 02215, and 2Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215 The structural and functional integrity of subgenual cingulate area 25 (A25) is crucial for emotional expression and equilibrium. A25 has a key role in affective networks, and its disruption has been linked to mood disorders, but its cortical connections have yet to be systematically or fully studied. Using neural tracers in rhesus monkeys, we found that A25 was densely connected with other ventrome- dial and posterior orbitofrontal areas associated with emotions and homeostasis. A moderate pathway linked A25 with frontopolar area 10, an area associated with complex cognition, which may regulate emotions and dampen negative affect. Beyond the frontal lobe, A25 was connected with auditory association areas and memory-related medial temporal cortices, and with the interoceptive-related anterior insula. A25 mostly targeted the superficial cortical layers of other areas, where broadly dispersed terminations comingled with modula- tory inhibitory or disinhibitory microsystems, suggesting a dominant excitatory effect. The architecture and connections suggest that A25 is the consummate feedback system in the PFC. Conversely, in the entorhinal cortex, A25 pathways terminated in the middle-deep layers amid a strong local inhibitory microenvironment, suggesting gating of hippocampal output to other cortices and memory storage. The graded cortical architecture and associated laminar patterns of connections suggest how areas, layers, and functionally distinct classes of inhibitory neurons can be recruited dynamically to meet task demands.
    [Show full text]
  • 031609.Phitchcock.Ce
    Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Non-commercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/ We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material. Copyright holders of content included in this material should contact [email protected] with any questions, corrections, or clarification regarding the use of content. For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use. Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition. Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers. Citation Key for more information see: http://open.umich.edu/wiki/CitationPolicy Use + Share + Adapt { Content the copyright holder, author, or law permits you to use, share and adapt. } Public Domain – Government: Works that are produced by the U.S. Government. (USC 17 § 105) Public Domain – Expired: Works that are no longer protected due to an expired copyright term. Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
    [Show full text]
  • Ontology and Nomenclature
    TECHNICAL WHITE PAPER: ONTOLOGY AND NOMENCLATURE OVERVIEW Currently no “standard” anatomical ontology is available for the description of human brain development. The main goal behind the generation of this ontology was to guide specific brain tissue sampling for transcriptome analysis (RNA sequencing) and gene expression microarray using laser microdissection (LMD), and to provide nomenclatures for reference atlases of human brain development. This ontology also aimed to cover both developing and adult human brain structures and to be mostly comparable to the nomenclatures for non- human primates. To reach these goals some structure groupings are different from what is traditionally put forth in the literature. In addition, some acronyms and structure abbreviations also differ from commonly used terms in order to provide unique identifiers across the integrated ontologies and nomenclatures. This ontology follows general developmental stages of the brain and contains both transient (e.g., subplate zone and ganglionic eminence in the forebrain) and established brain structures. The following are some important features of this ontology. First, four main branches, i.e., gray matter, white matter, ventricles and surface structures, were generated under the three major brain regions (forebrain, midbrain and hindbrain). Second, different cortical regions were named as different “cortices” or “areas” rather than “lobes” and “gyri”, due to the difference in cortical appearance between developing (smooth) and mature (gyral) human brains. Third, an additional “transient structures” branch was generated under the “gray matter” branch of the three major brain regions to guide the sampling of some important transient brain lamina and regions. Fourth, the “surface structures” branch mainly contains important brain surface landmarks such as cortical sulci and gyri as well as roots of cranial nerves.
    [Show full text]
  • The Evolutionary Development of the Brain As It Pertains to Neurosurgery
    Open Access Original Article DOI: 10.7759/cureus.6748 The Evolutionary Development of the Brain As It Pertains to Neurosurgery Jaafar Basma 1 , Natalie Guley 2 , L. Madison Michael II 3 , Kenan Arnautovic 3 , Frederick Boop 3 , Jeff Sorenson 3 1. Neurological Surgery, University of Tennessee Health Science Center, Memphis, USA 2. Neurological Surgery, University of Arkansas for Medical Sciences, Little Rock, USA 3. Neurological Surgery, Semmes-Murphey Clinic, Memphis, USA Corresponding author: Jaafar Basma, [email protected] Abstract Background Neuroanatomists have long been fascinated by the complex topographic organization of the cerebrum. We examined historical and modern phylogenetic theories pertaining to microneurosurgical anatomy and intrinsic brain tumor development. Methods Literature and history related to the study of anatomy, evolution, and tumor predilection of the limbic and paralimbic regions were reviewed. We used vertebrate histological cross-sections, photographs from Albert Rhoton Jr.’s dissections, and original drawings to demonstrate the utility of evolutionary temporal causality in understanding anatomy. Results Phylogenetic neuroanatomy progressed from the substantial works of Alcmaeon, Herophilus, Galen, Vesalius, von Baer, Darwin, Felsenstein, Klingler, MacLean, and many others. We identified two major modern evolutionary theories: “triune brain” and topological phylogenetics. While the concept of “triune brain” is speculative and highly debated, it remains the most popular in the current neurosurgical literature. Phylogenetics inspired by mathematical topology utilizes computational, statistical, and embryological data to analyze the temporal transformations leading to three-dimensional topographic anatomy. These transformations have shaped well-defined surgical planes, which can be exploited by the neurosurgeon to access deep cerebral targets. The microsurgical anatomy of the cerebrum and the limbic system is redescribed by incorporating the dimension of temporal causality.
    [Show full text]
  • Cortical and Subcortical Anatomy: Basics and Applied
    43rd Congress of the Canadian Neurological Sciences Federation Basic mechanisms of epileptogenesis and principles of electroencephalography Cortical and subcortical anatomy: basics and applied J. A. Kiernan MB, ChB, PhD, DSc Department of Anatomy & Cell Biology, The University of Western Ontario London, Canada LEARNING OBJECTIVES Know and understand: ! Two types of principal cell and five types of interneuron in the cerebral cortex. ! The layers of the cerebral cortex as seen in sections stained to show either nucleic acids or myelin. ! The types of corrtex: allocortex and isocortex. ! Major differences between extreme types of isocortex. As seen in primary motor and primary sensory areas. ! Principal cells in different layers give rise to association, commissural, projection and corticothalamic fibres. ! Cortical neurons are arranged in columns of neurons that share the same function. ! Intracortical circuitry provides for neurons in one column to excite one another and to inhibit neurons in adjacent columns. ! The general plan of neuronal connections within nuclei of the thalamus. ! The location of motor areas of the cerebral cortex and their parallel and hierarchical projections to the brain stem and spinal cord. ! The primary visual area and its connected association areas, which have different functions. ! Somatotopic representation in the primary somatosensory and motor areas. ! Cortical areas concerned with perception and expression of language, and the anatomy of their interconnections. DISCLOSURE FORM This disclosure form must be included as the third page of your Course Notes and the third slide of your presentation. It is the policy of the Canadian Neurological Sciences Federation to insure balance, independence, objectivity and scientific rigor in all of its education programs.
    [Show full text]
  • Differences in Functional Connectivity Along the Anterior-Posterior Axis of Human Hippocampal Subfields
    bioRxiv preprint doi: https://doi.org/10.1101/410720; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Differences in functional connectivity along the anterior-posterior axis of human hippocampal subfields Marshall A. Dalton, Cornelia McCormick, Eleanor A. Maguire* Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, UK *Corresponding author: Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK T: +44-20-34484362; F: +44-20-78131445; E: [email protected] (E.A. Maguire) Highlights High resolution resting state functional MRI scans were collected We investigated functional connectivity (FC) of human hippocampal subfields We specifically examined FC along the anterior-posterior axis of subfields FC between subfields extended beyond the canonical tri-synaptic circuit Different portions of subfields showed different patterns of FC with neocortex 1 bioRxiv preprint doi: https://doi.org/10.1101/410720; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract There is a paucity of information about how human hippocampal subfields are functionally connected to each other and to neighbouring extra-hippocampal cortices.
    [Show full text]
  • Neuronal Properties and Synaptic Connectivity in Rodent Presubiculum Jean Simonnet
    Neuronal properties and synaptic connectivity in rodent presubiculum Jean Simonnet To cite this version: Jean Simonnet. Neuronal properties and synaptic connectivity in rodent presubiculum. Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066435. tel-02295014 HAL Id: tel-02295014 https://tel.archives-ouvertes.fr/tel-02295014 Submitted on 24 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Neurosciences École doctorale Cerveau – Cognition – Comportement Présentée par : Jean Simonnet Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Neuronal properties and synaptic connectivity in rodent presubiculum Soutenue le 23.09.2014 devant le jury composé de : Dr Jean-Christophe Poncer Président Dr Dominique Debanne Rapporteur Dr Maria Cecilia Angulo Rapportrice Pr Hannah Monyer Examinatrice Dr Bruno Cauli Examinateur Dr Desdemona Fricker Directrice de thèse Université Pierre & Marie Curie - Paris 6 Tél. Secrétariat : 01 42 34 68 35 Bureau d’accueil, inscription des doctorants Fax : 01 42 34 68 40 et base de données Tél. pour les étudiants de A à EL : 01 42 34 68 41 Esc.
    [Show full text]