Specular Vs. Diffuse Reflection Lesson Notes

Total Page:16

File Type:pdf, Size:1020Kb

Specular Vs. Diffuse Reflection Lesson Notes © The Physics Classroom www.physicsclassroom.com/Physics-Video-Tutorial/Reflection-and-Mirrors Specular vs. Diffuse Reflection Lesson Notes Learning Outcomes • What is specular reflection? • What is diffuse reflection? • How are they similar? And how are they different? The Law of Reflection ... Revisited When light reflects off a mirror, the angle between the incoming ray (incident ray) and the normal line is equal to the angle between the outgoing ray (reflected ray) and the normal line. What is Specular Reflection? Specular reflection is the phenomenon in which a beam of light (a bundle of parallel light rays) reflects off a surface and remains as a beam of light. This is observed when light beams reflect from microscopically smooth surfaces. The normal lines for adjacent light rays in the beam are parallel to each other. What is Diffuse Reflection? Diffuse reflection is the phenomenon in which a beam of light (a bundle of parallel light rays) reflects off a surface and becomes scattered in a variety of directions. Observed when light beams reflect from microscopically rough surfaces. The normal lines for adjacent light rays in the beam are NOT parallel to each other. Specular Reflection Diffuse Reflection Reflection Off Paper Surfaces Paper consists of numerous interwoven fibers that make the surface of paper microscopically rough. Light that strikes the surface is diffused about the surface, illuminating the entire surface. Paper surfaces are easy to read off of because the surface is uniformly illuminated and absent of a glare. Specular and Diffuse Reflection AND the Viewing of Images What About the Law of Reflection In both specular reflection and diffuse reflection, light follows the law of reflection. That’s NOT the difference between the two types of reflection. The difference between the two types of reflection has to do with the fact that the normal line for each ray of light within the beam is not parallel to each other. Because of surface irregularities, not every ray encounters the same surface orientation. .
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • The Diffuse Reflecting Power of Various Substances 1
    . THE DIFFUSE REFLECTING POWER OF VARIOUS SUBSTANCES 1 By W. W. Coblentz CONTENTS Page I. Introduction . 283 II. Summary of previous investigations 288 III. Apparatus and methods 291 1 The thermopile 292 2. The hemispherical mirror 292 3. The optical system 294 4. Regions of the spectrum examined 297 '. 5. Corrections to observations 298 IV. Reflecting power of lampblack 301 V. Reflecting power of platinum black 305 VI. Reflecting power of green leaves 308 VII. Reflecting power of pigments 311 VIII. Reflecting power of miscellaneous substances 313 IX. Selective reflection and emission of white paints 315 X. Summary 318 Note I. —Variation of the specular reflecting power of silver with angle 319 of incidence I. INTRODUCTION In all radiometric work involving the measurement of radiant energy in absolute value it is necessary to use an instrument that intercepts or absorbs all the incident radiations; or if that is impracticable, it is necessary to know the amount that is not absorbed. The instruments used for intercepting and absorbing radiant energy are usually constructed in the form of conical- shaped cavities which are blackened with lampblack, the expecta- tion being that, after successive reflections within the cavity, the amount of energy lost by passing out through the opening is reduced to a negligible value. 1 This title is used in order to distinguish the reflection of matte surfaces from the (regular) reflection of polished surfaces. The paper gives also data on the specular reflection of polished silver for different angles of incidence, but it seemed unnecessary to include it in the title.
    [Show full text]
  • Some Diffuse Reflection Problems in Radiation Aerodynamics Stephen Nathaniel Falken Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1964 Some diffuse reflection problems in radiation aerodynamics Stephen Nathaniel Falken Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Aerospace Engineering Commons Recommended Citation Falken, Stephen Nathaniel, "Some diffuse reflection problems in radiation aerodynamics " (1964). Retrospective Theses and Dissertations. 3848. https://lib.dr.iastate.edu/rtd/3848 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 65-4604 microfilmed exactly as received FALiKEN, Stephen Nathaniel, 1937- SOME DIFFUSE REFLECTION PROBLEMS IN RADIATION AERODYNAMICS. Iowa State University of Science and Technology Ph.D., 1964 Engineering, aeronautical University Microfilms, Inc., Ann Arbor, Michigan SOME DIFFUSE REFLECTIOU PROBLEMS IN RADIATION AERODYNAMICS "by Stephen Nathaniel Falken A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF HîILOSOEHï Major Subjects: Aerospace Engineering Mathematics Approved: Signature was redacted for privacy. Cmrg^Vf Major Work Signature was redacted for privacy. Heads of Mgjor Departments Signature was redacted for privacy. De of Gradu^ e College Iowa State University Of Science and Technology Ames, loTfa 196k ii TABLE OF CONTENTS page DEDICATION iii I. LIST OF SYMBOLS 1 II. INTRODUCTION. 5 HI. GENERAL AERODYNAMIC FORCE ANALYSIS 11 IV. THE THEORY OF RADIATION AERODYNAMICS Ik A.
    [Show full text]
  • 3 Specular Reflection Spectroscopy
    3 Specular Reflection Spectroscopy Robert J. Lipert, Brian D. Lamp, and Marc D. Porter 3.1 INTRODUCTION This chapter on specular reflection spectroscopy focuses on applications in the mid-infrared region of the spectrum. Applications in other spectral regions or using other spectroscopic techniques, such as Raman spectros­ copy, generally follow similar patterns as discussed in this chapter. In the past few decades, infrared spectroscopy (IRS) has developed into an invaluable diagnostic tool for unraveling details about the bonding and molecular structure at surfaces [l, 2, 3, 4, 5, 6]. The importance of IRS derives from five major factors, The first and most critical factor is the role of interfacial phenomena in a vast number of emerging material and surface technologies. Examples include adhesion, catalysis, tribiology, microelec­ tronics, and electrochemistry [3, 7, 8, 9]. The second factor stems from the Modern Techniques in Applied Molecular Spectroscopy, Edited by Francis M. Mirabella. Techniques in Analytical Chemistry Series. ISBN 0-471-12359-5 © 1998 John Wiley & Sons, Inc. 83 84 Specular Reflection Spectroscopy information-rich content of an IRS spectrum of a surface. That is, the frequencies of the spectroscopic features can be used to identify the chemical composition of a surface and the magnitudes and polarization dependencies of the features used to determine average structural orientations. The third factor arises from advances in the performance of IRS instrumentation. The most important of these advancements are the high throughput and multi­ plex advantages of Fourier transform interferometry, the development of high sensitivity, low-noise IR detectors, and the improvement in the com­ putational rates of personal computers and their adaptation to the oper­ ation of chemical instrumentation.
    [Show full text]
  • Ap Physics 2 Summary Chapter 21 – Reflection and Refraction
    AP PHYSICS 2 SUMMARY CHAPTER 21 – REFLECTION AND REFRACTION . Light sources and light rays Light Bulbs, candles, and the Sun are examples of extended sources that emit light. Light from such sources illuminates other objects, which reflect the light. We see an object because incident light reflects off of it and reaches our eyes. We represent the travel of light rays (drawn as lines and arrows). Each point of a shining object or a reflecting object send rays in all directions. Law of reflection When a ray strikes a smooth surface such as a mirror, the angle between the incident ray and the normal line perpendicular to the surface equals the angle between the reflected ray and the normal line (the angle of incidence equals the angle of reflection). This phenomenon is called specular reflection. Diffuse reflection If light is incident on an irregular surface, the incident light is reflected in many different directions. This phenomenon is called diffuse reflection. Refraction If the direction of travel of light changes as it moves from one medium to another, the light is said to refract (bend) as it moves between the media. Snell’s law Light going from a lower to a higher index of refraction will bend toward the normal, but going from a higher to a lower index of refraction it will bend away from the normal. Total internal reflection If light tries to move from a more optically dense medium 1 of refractive index n1 into a less optically dense medium 2 of refractive index n2 (n1>n2), the refracted light in medium 2 bends away from the normal line.
    [Show full text]
  • Method for Measuring Solar Reflectance of Retroreflective Materials Using Emitting-Receiving Optical Fiber
    Method for Measuring Solar Reflectance of Retroreflective Materials Using Emitting-Receiving Optical Fiber HiroyukiIyota*, HidekiSakai, Kazuo Emura, orio Igawa, Hideya Shimada and obuya ishimura, Osaka City University Osaka, Japan *Corresponding author email: [email protected] ABSTRACT The heat generated by reflected sunlight from buildings to surrounding structures or pedestrians can be reduced by using retroreflective materials as building exteriors. However, it is very difficult to evaluate the solar reflective performance of retroreflective materials because retroreflective lightcannotbe determined directly using the integrating sphere measurement. To solve this difficulty, we proposed a simple method for retroreflectance measurementthatcan be used practically. A prototype of a specialapparatus was manufactured; this apparatus contains an emitting-receiving optical fiber and spectrometers for both the visible and the infrared bands. The retroreflectances of several types of retroreflective materials are measured using this apparatus. The measured values correlate well with the retroreflectances obtained by an accurate (but tedious) measurement. The characteristics of several types of retroreflective sheets are investigated. Introduction Among the various reflective characteristics, retroreflective materials as shown in Fig.1(c) have been widely used in road signs or work clothes to improve nighttime visibility. Retroreflection was given by some mechanisms:prisms, glass beads, and so on. The reflective performance has been evaluated from the viewpointof these usages only. On the other hand, we have shown thatretroreflective materials reduce the heatgenerated by reflected sunlight(Sakai, in submission). The use of such materials on building exteriors may help reduce the urban heatisland effect. However, itis difficultto evaluate the solar reflective performance of retroreflective materials because retroreflectance cannot be determined using Figure 1.
    [Show full text]
  • EMT UNIT 1 (Laws of Reflection and Refraction, Total Internal Reflection).Pdf
    Electromagnetic Theory II (EMT II); Online Unit 1. REFLECTION AND TRANSMISSION AT OBLIQUE INCIDENCE (Laws of Reflection and Refraction and Total Internal Reflection) (Introduction to Electrodynamics Chap 9) Instructor: Shah Haidar Khan University of Peshawar. Suppose an incident wave makes an angle θI with the normal to the xy-plane at z=0 (in medium 1) as shown in Figure 1. Suppose the wave splits into parts partially reflecting back in medium 1 and partially transmitting into medium 2 making angles θR and θT, respectively, with the normal. Figure 1. To understand the phenomenon at the boundary at z=0, we should apply the appropriate boundary conditions as discussed in the earlier lectures. Let us first write the equations of the waves in terms of electric and magnetic fields depending upon the wave vector κ and the frequency ω. MEDIUM 1: Where EI and BI is the instantaneous magnitudes of the electric and magnetic vector, respectively, of the incident wave. Other symbols have their usual meanings. For the reflected wave, Similarly, MEDIUM 2: Where ET and BT are the electric and magnetic instantaneous vectors of the transmitted part in medium 2. BOUNDARY CONDITIONS (at z=0) As the free charge on the surface is zero, the perpendicular component of the displacement vector is continuous across the surface. (DIꓕ + DRꓕ ) (In Medium 1) = DTꓕ (In Medium 2) Where Ds represent the perpendicular components of the displacement vector in both the media. Converting D to E, we get, ε1 EIꓕ + ε1 ERꓕ = ε2 ETꓕ ε1 ꓕ +ε1 ꓕ= ε2 ꓕ Since the equation is valid for all x and y at z=0, and the coefficients of the exponentials are constants, only the exponentials will determine any change that is occurring.
    [Show full text]
  • Reflection Measurements in IR Spectroscopy Author: Richard Spragg Perkinelmer, Inc
    TECHNICAL NOTE Reflection Measurements in IR Spectroscopy Author: Richard Spragg PerkinElmer, Inc. Seer Green, UK Reflection spectra Most materials absorb infrared radiation very strongly. As a result samples have to be prepared as thin films or diluted in non- absorbing matrices in order to measure their spectra in transmission. There is no such limitation on measuring spectra by reflection, so that this is a more versatile way to obtain spectroscopic information. However reflection spectra often look quite different from transmission spectra of the same material. Here we look at the nature of reflection spectra and see when they are likely to provide useful information. This discussion considers only methods for obtaining so-called external reflection spectra not ATR techniques. The nature of reflection spectra The absorption spectrum can be calculated from the measured reflection spectrum by a mathematical operation called the Kramers-Kronig transformation. This is provided in most data manipulation packages used with FTIR spectrometers. Below is a comparison between the absorption spectrum of polymethylmethacrylate obtained by Kramers-Kronig transformation of the reflection spectrum and the transmission spectrum of a thin film. Figure 1. Reflection and transmission at a plane surface Reflection takes place at surfaces. When radiation strikes a surface it may be reflected, transmitted or absorbed. The relative amounts of reflection and transmission are determined by the refractive indices of the two media and the angle of incidence. In the common case of radiation in air striking the surface of a non-absorbing medium with refractive index n at normal incidence the reflection is given by (n-1)2/(n+1)2.
    [Show full text]
  • 25 Geometric Optics
    CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Physics I Notes Chapter 14: Light, Reflection, and Color
    Physics I Notes Chapter 14: Light, Reflection, and Color Characteristics of light • Light is an electromagnetic wave . As shown below, an electromagnetic wave is a transverse wave consisting of mutually perpendicular oscillating electric and magnetic fields. Electromagnetic waves are ultimately produced by an accelerating charge. A changing electric field produces a changing magnetic field which in turn produces a changing electric field and so on. Because of this relationship between the changing electric and magnetic fields, an electromagnetic wave is a self- propagating wave that can travel through a vacuum or a material medium since electric and magnetic fields can exist in either one. Animation of e.m. wave with vibrating charge Scroll down after webpage loads for animation. http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=35.0 • All electromagnetic waves travel at the speed of light. Electromagnetic waves are distinguished from each other by their differences in wavelengths and frequencies (wavelength is inversely related to frequency) . c=f λλλ c = speed of light = 3.0 x 10 8 m/s in a vacuum = 300,000 km/s = 186,000 miles/s A light year is the distance that light travels in one year in a vacuum. So haw many miles would that be? What would a light-minute be? • The electromagnetic spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength. Visible light is only a small portion of the entire electromagnetic spectrum. Page 1 of 8 • Brightness or intensity of light decreases by the square of the distance from the source (inverse square law).
    [Show full text]
  • FTIR Reflection Techniques
    FT-IR Reflection Techniques Vladimír Setnička Overview – Main Principles of Reflection Techniques Internal Reflection External Reflection Summary Differences Between Transmission and Reflection FT-IR Techniques Transmission: • Excellent for solids, liquids and gases • The reference method for quantitative analysis • Sample preparation can be difficult Reflection: • Collect light reflected from an interface air/sample, solid/sample, liquid/sample • Analyze liquids, solids, gels or coatings • Minimal sample preparation • Convenient for qualitative analysis, frequently used for quantitative analysis FT-IR Reflection Techniques Internal Reflection Spectroscopy: Attenuated Total Reflection (ATR) External Reflection Spectroscopy: Specular Reflection (smooth surfaces) Combination of Internal and External Reflection: Diffuse Reflection (DRIFTs) (rough surfaces) FT-IR Reflection Techniques • Infrared beam reflects from a interface via total internal reflectance • Sample must be in optical contact with the crystal • Collected information is from the surface • Solids and powders, diluted in a IR transparent matrix if needed • Information provided is from the bulk matrix • Sample must be reflective or on a reflective surface • Information provided is from the thin layers Attenuated Total Reflection (ATR) - introduced in the 1960s, now widely used - light introduced into a suitable prism at an angle exceeding the critical angle for internal reflection an evanescent wave at the reflecting surface • sample in close contact Single Bounce ATR with IRE
    [Show full text]