<<

MethodforMeasuringSolarofRetroreflectiveMaterials UsingEmittingReceivingOpticalFiber HiroyukiIyota*,HidekiSakai,KazuoEmura,orioIgawa, HideyaShimadaandobuyaishimura, OsakaCityUniversity Osaka,Japan *Correspondingauthoremail:[email protected]cu.ac.jp ABSTRACT The heat generated by reflected from buildings to surrounding structures or pedestrianscanbereducedbyusingretroreflectivematerialsasbuildingexteriors.However,itis very difficult to evaluate the solar reflective performance of retroreflective materials because retroreflectivecannotbedetermineddirectlyusingtheintegratingspheremeasurement.To solvethisdifficulty,weproposedasimplemethodforretroreflectancemeasurementthatcanbe usedpractically.Aprototypeofaspecialapparatuswasmanufactured;thisapparatuscontainsan emittingreceiving optical fiber and spectrometers for both the visible and the infrared bands. The retroreflectances of several types of retroreflective materials are measured using this apparatus.Themeasuredvaluescorrelatewellwiththeretroreflectancesobtainedbyanaccurate (but tedious) measurement. The characteristics of several types of retroreflective sheets are investigated. Introduction Among the various reflective characteristics, retroreflective materials as shown in Fig.1(c)havebeenwidelyusedinroadsignsorworkclothestoimprovenighttimevisibility. Retroreflectionwasgivenbysomemechanisms:,beads,andsoon.Thereflective performancehasbeenevaluatedfromtheviewpointoftheseusagesonly. Ontheotherhand,wehaveshownthatretroreflectivematerialsreducetheheatgenerated byreflectedsunlight(Sakai,insubmission).Theuseofsuchmaterialsonbuildingexteriorsmay helpreducetheurbanheatislandeffect.However,itisdifficulttoevaluatethesolarreflective performance of retroreflective materials because retroreflectance cannot be determined using Figure1.(a)Specular,(b)DiffuseReflection,and(c)Retroreflection

theintegratingspheremeasurement. Inthisstudy,weproposeasimplemethodformeasuringretroreflectancethatcanbeused practically.Aspecialapparatuscontaininganemittingreceivingopticalfiberandspectrometers for both the visible and the infrared band was developed. The retroreflectance and angular dependencyofseveralcommercialsheettyperetroreflectivematerialsweremeasuredusingthis apparatus. MaterialsandMethod Wedesignedanapparatus(Fig.2)consistingofahalogenlightsource,spectrometersfor both the visible and the infrared bands (Ocean Co. Ltd., USB4000, for 400–1100 nm; Hamamatsu Photonics Co, Ltd., C9606GC, for 1000–1715 nm, respectively), an emitting receivingopticalfiberprobe(OceanOpticsCo.Ltd.,R4007VIS/NIR),arotationmechanism for varying the incident/observed angle θ (7, 15, 30, 45, and 60°), and a sample stage for adjustingthesamplesurfaceheight.AdetailedviewofthefiberheadisshowninFig.3.This fiber probe has seven multimode glass fibers having a diameter of 400 m and a numerical apertureof0.22.Sixfibersareusedforemittinglighttothesamplesurfacewhiletheremaining oneislocatedatthecenterforreceivingthereflectedlightfromthesamplesurface. Figure2.EmittingReceivingOpticalFiberSystem Reflection 2. Glass fiberGlass fiber Incident radiation IncidentIncidentIncident///observedobservedobserved aaangleanglenglengleθθθ 4. SpectroSpectroSpectrometerSpectrometermetermeter 1. Light sourcesourcesource HeightHeightHeight hhh === 303030 mmmmmm 3. SampleSampleSample Figure3.DetailedviewofEmittingReceivingOpticalFiberHead Fiberheadforemitting (d=400m×6) Fiberheadforreceiving Stainlesssteelsheath (d=400m×1) (d=6.5mm) Thissystemdetectsapartoftheretroreflectivelight.Themeasuredvalueisalsoaffected by the numerical aperture of the fiber end. Thus, the measured value using this apparatus is relative, and not absolute. In this study, we used a calibrated diffuser, Spectralon (LabsphereCo.,Ltd.),having99%reflectancetostandardizetheoutputofthesystem.Then,we defined the retroreflective strength, Rst, that is derived from the weighted integration of the measuredspectralretroreflectionusingspectraldirectsolarradiationdefinedinISO98451(ISO, 1992). Totesttheperformanceofthissystem,fivetypesofretroreflectivesheets(Nos.1and2: arraytype,No.3:Capsulelenstype,Nos.4and5:Beadembeddedtype)wereusedasthe samples. ResultsandDiscussions Asanexampleofdatameasuredusingtheemittingreceivingopticalfibermeasurement system,Fig.4showsthespectralretroreflectanceRst(λ)oftheprismarraysheet(sample1).The sample sheets used are mainly designed for traffic signs in the wavelength of visible light. However,theresultsindicatethattheyhaveobviousretroreflectivepropertiesforwavelengthsof 400–1715nm,i.e.,bothvisibleandnearinfraredlight. TheretroreflectivestrengthsRstofallsamplesatincidentanglesrangingfrom7°to60° areshowninTable1.TheretroreflectanceRRet at7°,which wasreportedinapreviouspaper (Sakai,insubmission),isshowninthesecondcolumnofTable1. Figure5showstherelationshipbetweentheretroreflectanceRRetandtheretroreflective strengthRstmeasuredatanincident/observedangleof7°.Thefigureindicatesthatthemeasured values (Rst) correlate well with results (RRet) obtained by an accurate measurement, and they haveaproportionalrelation.Therefore,theemittingreceivingopticalfibersystemcanbeused asasimplemethodformeasuringtheretroreflectance. Figure4.AngularDependencyofSpectraofRetroreflectiveStrengthRst(λ)Measuredby theEmittingReceivingOpticalFiberSystem(Sampleo.1:Prismarraytype) 400 Incident/observedangleθ =7º 300 15º 30º 200 (λ) [-]

st R 45º 100 60º strength Retroreflective 0 400 800 1200 1600 Wavelength λ [nm] Table1ExperimentalResult:AngularDependencyofRetroreflectiveStrengthRstofthe SampleSheetsMeasuredbytheEmittingReceivingOpticalFiberSystem.Retroreflectance RRetObtainedinthePreviousPaperisalsoShownforComparison Retroreflectance Retroreflectivestrength SampleNo.(type) RRet[%] Rst[] 7° 7° 15° 30° 45° 60° 1(Prismarray) 29.5 279 265 148 66 35 2(Prismarray) 23.5 276 210 212 198 130 3(Capsulelens) 17.8 116 117 118 102 38 4(Beadembedded) 12.9 82 85 85 35 6 5(Beadembedded) 4.9 11 12 13 13 10 Figure5.RelationshipsbetweenRetroreflectanceRRetObtainedinthePreviousPaperand RetroreflectiveStrengthRstMeasuredbytheEmittingReceivingOpticalFiberSystem 35 30 25 20 [%]

Ret 15 R 10 5 0 0 100 200 300 R [-] st Figure6.AngularDependencyofRetroreflectanceRstMeasuredbytheEmittingReceiving OpticalFiberSystem Figure 6 shows the angular dependency of the retroreflective strength Rst of all the abovementioned samples. The characteristics of retroreflectance for each sample type were summarizedasfollows. Prismarraytype(Nos.1and2) Theretroreflectanceoftheprismarraytypeisgenerallyhigherthanthatofothertypesof retroreflectivesheets.Atanincident/observingangleof7°,itsretroreflectivestrengthwasfound tobemorethantwicethatoftheothertypes.However,itsangulardependencewaslargerthan thoseoftheotherstypes.Theretroreflectivestrengthdecreasedsharplyatlargeangles.Thisis becauseaprismhasacriticalangleforretroreflection,anditsreflectionmechanismworkswell onlywithinthecriticalangle.Therefore,prismarraytypesheetsaresuitableforpreventingheat duetoreflectedsunlightatparticularsolarpositions. Capsulelenstype(No.3)andbeadembeddedtype(Nos.4and5) Theretroreflectancesofthecapsulelenstypeandbeadembeddedtypearelessthanhalf those of the prismarray type at small incident/observing angles. However, their angular dependencesaresmallandtheirretroreflectivestrengthsarealmostconstantatanglesbetween 7°and45°.Thisisbecausetheballshapedlensusedinthecapsulelensorbeadembeddedtype retroreflective sheet has no strict critical angle for reflection. Therefore, these sheets of these typesareeffectiveatawiderangeofsolarpositions. Conclusions Thefollowingresultshavebeenobtainedinthepresentstudy. 1) A simple method was proposed for measuring the retroreflective performance using an emittingreceiving optical fiber system. The values measured using this method correlate wellwiththeretroreflectionsobtainedbyanaccuratemeasurement. 2) The retroreflectances of prismarray retroreflective materials are generally high. However, theirangulardependenceislarge,andtheretroreflectivestrengthdecreasessharplyatlarge angles. 3) The retroreflectances of capsulelens and beadembedded retroreflective materials are less than half those of the prismarray type at small incident/observing angles. However, their angulardependencesaresmall. Acknowledgment This work was supported by GrantinAid for Scientific Research 19560578 from the Japan Society for the Promotion of Science and by a research grant for urban problems from OsakaCityUniversity. References Sakai, H., Emura, K., Igawa, N., Iyota, H., Reduction of Reflected Heat of the Sun by Retroreflective Materials, The Second International Conference on Countermeasures to UrbanHeatIslands(SICCUHI),insubmission. CIE Publication 180: 2007. Road Transport Lighting For Developing Countries, CIE Central Bureau,Vienna. ISO 98451:1992 Solar energy Reference solar spectral irradiance at the ground at different receiving conditions Part 1: Direct nomal and hemispherical solar irradinace for air mass1,5