Disease Ecology and Epidemiology of Cutaneous Leishmaniasis Caused by Leishmania Tropica in Palestine

Total Page:16

File Type:pdf, Size:1020Kb

Disease Ecology and Epidemiology of Cutaneous Leishmaniasis Caused by Leishmania Tropica in Palestine Disease Ecology and Epidemiology of Cutaneous Leishmaniasis caused by Leishmania tropica in Palestine Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Ikram A. Salah Submitted to the Senate of Ben-Gurion University of the Negev February 28, 2018 Beer-Sheva I Disease Ecology and Epidemiology of Cutaneous Leishmaniasis caused by Leishmania tropica in Palestine Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Ikram A. Salah Submitted to the Senate of Ben-Gurion University of the Negev Approved by: __________________ Burt Kotler Nadav Davidovitch (Advisor) (Advisor) ____________________________________________ Dudy Bar-Zvi (Dean of the Kreitman School of Advanced Graduate Studies) February 28, 2018 Beer-Sheva II This work was carries under the supervision of: Prof. Burt Kotler Marco and Louise Mitrani Department of Desert Ecology The Swiss Institute for Dryland Environmental and Energy Research The Jacob Blaustein Institute for Desert Research Ben-Gurion University of the Negev Prof. Nadav Davidovitch Department of Health System Management School of Public Health Faculty of Health Science Ben-Gurion University of the Negev III Research-Student's Affidavit when Submitting the Doctoral Thesis for Judgment I Ikram A. Salah, whose signature appears below, hereby declare that (Please mark the appropriate statements): X I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. X The scientific materials included in this Thesis are products of my own research, culled from the period during which I was a research student. This Thesis incorporates research materials produced in cooperation with others, excluding the technical help commonly received during experimental work. Therefore, I am attaching another affidavit stating the contributions made by myself and the other participants in this research, which has been approved by them and submitted with their approval. Date: February 19, 2018 Student's name: Ikram A. Salah Signature: IV ACKNOWLEDGEMENTS A special and profound thanks to my Mom, my sister Hala Salah, sisters, brothers, nephews, nieces and the rest of my extended family for theirs help, encouragement and support. How can I forget my angel who supports, encourages and stands by me to pass all difficult days. I would like to express my gratitude to my supervisor Prof. Burt Kotler, for his good advice, encouragement and support, and for his continuous belief in me. I am truly thankful to my supervisor Prof. Nadav Davidovitch for opening me the window to the enthralling field of Eco- health, and for his encouragement and support. I also thank my committee members Yael Lubin, Hadas Hawlena, and Alon Warburg. Many thanks to my lab mates Elsita Kiekebusch, Austin Dixon, Jorge Menezes, and Stuart Summerfield, who provide input, discussion, help, and encouragement all the time. Thanks to the whole community of Kisan Village, Arab Ar-Rashaiyda village, and Arab Al ‘Azazma in Bethlehem District. Thanks to the whole community of Tubas District. Special thanks to Taleb Qasal, Ezat Dragmeah family, and Mohammad Shriam family who were hosting me during the time of the field work. Many thanks to Taleb Qasal, Saad Dragmeah, Ahmad Othman, and Mahmood Bsharat who were helping me setting the traps and going with me house by house to conduct the interviews during the field work. I am indebted to Prof. Alon Warburg for supporting, advising and making the research possible by providing most of the equipment for sand fly collection, and allowing me to conduct all molecular analysis for sand flies in his laboratory. Many thanks to Dr. Amer Al-Jawabreh for teaching me the basis of molecular biology, and giving me the courage to learn all the procedures of collecting, analyzing the patient’s samples. Last but not least, I am grateful to Dr. Ibrahim Abbasi for teaching me how to identify blood meal in sand flies, thanks for all support, help, and patience. V This study was made possible by a generous grant from Ben-Gurion University president’s Prof. Rivka Carmi, Georg Waechter Memorial Foundation, and Science Training Encouraging Peace – Graduate Training Program (STEP-GTP). And finally, thank you all. With love I dedicate this work to the person who encouraged me all the time, my Father, May his soul rest in peace. Also to the women who was dreaming all the time to have an educated daughter, my Mother, May God grant her good health. "Save the World from Diseases" (Ibn Sina – Avicenna) "O men! Here is a parable set forth! Listen to it! Those on whom, besides Allah, ye call, cannot create (even) a fly, if they all met together for the purpose! And if the fly should snatch away anything from them, they would have no power to release it from the fly. Feeble are those who petition and those whom they petition!" (Chapter 22, Al-Hajj: Verse 73) VI Table of Constants Research-Student's Affidavit for Submitting the Doctoral Thesis for Judgment IV Acknowledgements V Table of Contents VII List of Figures and Tables XII List of Abbreviation and Terms XVI Abstract XVII CHAPTER ONE: INTRODUCTION 1 1.1.0.0.0. General background 1 1.2.0.0.0. Leishmaniasis 6 1.2.1.0.0. Geographical distribution 6 1.2.2.0.0. The disease 6 1.2.2.1.0. Cutaneous leishmaniasis (CL) 7 1.2.2.2.0. Mucocutaneous leishmaniasis (MCL) 7 1.2.2.3.0. Visceral leishmaniasis (VL) 7 1.2.2.4.0. Post Kala-Azar dermal leishmaniasis (PKDL) 8 1.3.0.0.0. The causative agent 8 VII 1.3.1.0.0. The parasite 8 1.3.2.0.0. The life cycle: 8 1.3.3.0.0. Transmission 8 1.4.0.0.0. The vector: Phlebotomine Sandflies (Diptera: Psychodidae) 9 1.4.1.0.0. Feeding behavior 9 1.4.2.0.0. Distributions of sand flies 9 1.4.3.0.0. Population dynamic and seasonal changes 10 1.4.4.0.0. Public health importance of sand fly distributions 10 1.4.5.0.0. Control methods of Sand flies 11 1.5.0.0.0. The Reservoir Host: Rock Hyrax Procavia capensis ( Hyracoidea: 12 Procaviidae) 1.5.1.0.0. Rock Hyrax distribution 12 1.5.2.0.0. Rock Hyrax, Reservoir host of Leishmaniasis 12 1.6.0.0.0. Leishmaniasis in Palestine 13 1.7.0.0.0. Eco-epidemiological approach 14 1.8.0.0.0. Overall aim and specific objectives 15 1.8.1.0.0. Overall aim 15 1.8.2.0.0. Specific objectives 15 1.9.0.0.0. General and specific hypothesis 16 1.9.1.0.0. General hypothesis 16 VIII 1.9.2.0.0. Specific hypothesis 16 1.10.0.0.0. Innovation aspects 16 CHAPTER TWO: MATERIALS AND METHODS 17 2.1.0.0.0. Sand fly sampling at the Bethlehem study sites 17 2.1.0.1.0. Study area 17 2.1.0.2.0. Data collection 17 2.1.1.0.0. Comparison of sand fly activity between KIS, AAR, AZA in 2013 17 2.1.1.1.0. Comparison of sand fly densities among the three sites 17 2.1.1.2.0. Comparison in species for males among the three sites 19 2.1.1.3.0. Host blood species identification and Leishmania parasite detection 19 2.1.1.3.1. Sand flies identification 19 2.1.1.3.2. DNA extraction 19 2.1.1.3.3. Blood meal identification and parasite detection 20 2.1.2.0.0. Comparison of Sand fly activity between AAR, AZA in 2014 20 2.1.0.3.0. Statistical analysis 20 2.2.0.0.0. Epidemiological Investigation in the Tubas study sites 21 2.2.0.1.0. Study area 21 2.2.0.2.0. Data collection 21 2.2.0.3.0. Statistical analysis 23 IX 2.3.0.0.0. Sand fly transects for sampling the Tubas study site 23 2.3.0.1.0. Study area 23 2.3.0.2.0. Data collection 24 2.3.1.0.0. Sand fly density 24 2.3.2.0.0. Sand fly species identification 25 2.3.3.0.0. Leishmania parasite detection 26 2.3.4.0.0. Host blood species identification 26 2.3.0.3.0. Statistical analysis 26 CHAPTER THREE: RESULTS 27 3.1.0.0.0. Sand fly sampling at the Bethlehem study sites 27 3.1.1.0.0. Comparison of sand fly activity between KIS, AAR, AZA in 2013 27 3.1.1.1.0. Comparison of sand fly densities among the three sites 27 3.1.1.2.0. Comparison in species for males among the three sites 31 3.1.1.3.0. Host blood species identification and Leishmania parasite detection 33 3.1.2.0.0. Comparison of Sand fly activity between AAR, AZA in 2014 38 3.2.0.0.0. Epidemiological Investigation in the Tubas study sites 39 3.2.1.0.0. Demographic characteristics 39 3.2.2.0.0. Clinical information 43 3.2.3.0.0. Human behavior 45 X 3.2.4.0.0. Personal protection 45 3.2.5.0.0. Topography and house information 48 3.2.6.0.0. Information about vector and reservoir 48 3.3.0.0.0. Sand fly transects for sampling the Tubas study site 51 3.3.1.0.0. Sand fly density 51 3.3.2.0.0. Sand fly species identification 52 3.3.3.0.0. Leishmania parasite detection 55 3.3.4.0.0.
Recommended publications
  • Detection of Leishmania Aethiopica in Paraffin-Embedded Skin Biopsies Using the Polymerase Chain Reaction T
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Österreichischen Gesellschaft für Tropenmedizin und Parasitologie Jahr/Year: 1994 Band/Volume: 16 Autor(en)/Author(s): Laskay T., Miko T. L., Teferedegn H., Negesse Y., Rodgers M. R., Solbach W., Röllinghoff M., Frommel D. Artikel/Article: Onchozerkose-Kontrolle in Mali - Darstellung eines Kommunikationsdefizites und seine Entwicklung. 141-146 ©Österr. Ges. f. Tropenmedizin u. Parasitologie, download unter www.biologiezentrum.at Mitt. Österr. Ges. Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia (Director: Dr. D. Frommel) (1) Tropenmed. Parasitol. 16 (1994) All Africa Leprosy Rehabilitation and Training Center (ALERT), Addis Ababa, Ethiopia 141 - 146 (Managing Director: Mr. J. N. Alldred) (2) Department of Tropical Public Health, Harvard School of Public Health, Boston, MA (Head of Unit: Dr. Dyann Wirth) (3) Institute for Clinical Microbiology, Univerity of Erlangen-Nürnberg, Erlangen, F. R. G. (Director: Prof. Dr. M. Röllinghoff) (4) Detection of Leishmania aethiopica in paraffin-embedded skin biopsies using the polymerase chain reaction T. Laskay14, T. L. Miko1-2, H. Teferedegn1, Y. Negesse12, M. R. Rodgers3, W. Solbach4, M. Röllinghoff4, D. Frommel1 Introduction Cutaneous leishmaniasis (CL) is a serious public health problem in several areas of the world. Current reports indicate that the prevalence of the disease is increasing in many countries (4). One major focus of CL in the Old World is found in Ethiopia where the aetiological agent is Leishmania aethiopica (1, 2, 7). At present diagnosis relies on the detection of the parasite in smears or skin biopsy specimens by histopathological examination and/or by in vitro culture.
    [Show full text]
  • Plant-Feeding Phlebotomine Sand Flies, Vectors of Leishmaniasis, Prefer Cannabis Sativa
    Plant-feeding phlebotomine sand flies, vectors of leishmaniasis, prefer Cannabis sativa Ibrahim Abbasia,1, Artur Trancoso Lopo de Queirozb,1, Oscar David Kirsteina, Abdelmajeed Nasereddinc, Ben Zion Horwitza, Asrat Hailud, Ikram Salahe, Tiago Feitosa Motab, Deborah Bittencourt Mothé Fragab, Patricia Sampaio Tavares Verasb, David Pochef, Richard Pochef, Aidyn Yeszhanovg, Cláudia Brodskynb, Zaria Torres-Pochef, and Alon Warburga,2 aDepartment of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel; bInstituto Gonçalo Moniz-Fiocruz Bahia, 40296-710 Salvador, Bahia, Brazil; cGenomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel; dCollege of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia; eMitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; fGenesis Laboratories, Inc., Wellington, CO 80549; and gM. Aikimbayev Kazakh Scientific Center of Quarantine and Zoonotic Diseases, A35P0K3 Almaty, Kazakhstan Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved September 25, 2018 (received for review June 17, 2018) Blood-sucking phlebotomine sand flies (Diptera: Psychodidae) trans- obligatory phloem-sucking insects concentrate scarce essential mit leishmaniasis as well as arboviral diseases and bartonellosis. amino acids from phloem by excreting the excess sugary solutions Sand fly females become infected with Leishmania parasites and in the form of honeydew (11). The specific types of sugars and transmit them while imbibing vertebrates’ blood, required as a source their relative concentrations in honeydew can be used to in- of protein for maturation of eggs.
    [Show full text]
  • Detection, Genotyping, and Phylogenetic Analysis Of
    Parasitology Research (2019) 118:793–805 https://doi.org/10.1007/s00436-019-06222-z GENETICS, EVOLUTION, AND PHYLOGENY - ORIGINAL PAPER Detection, genotyping, and phylogenetic analysis of Leishmania isolates collected from infected Jordanian residents and Syrian refugees who suffered from cutaneous leishmaniasis Kamal J. F. Hijawi1 & Nawal S. Hijjawi1 & Jwan H. Ibbini2 Received: 11 June 2018 /Accepted: 17 January 2019 /Published online: 7 February 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Leishmania is a parasitic protozoan which is transmitted to humans through the bite of an infected female Phlebotomus and Lutzomyia sand flies. Cutaneous leishmaniasis (CL), caused by Leishmania major and L. tropica, is an endemic disease in many areas of Jordan and considered as a major public health problem. The political instability in the Syrian Arab Republic has resulted in the immigration of large number of refugees into Jordan where most of them resided in camps near the Syrian borders. Therefore, the main objective of the present study was to inspect Leishmania species/genotypes which are responsible for CL infections among Syrian refugees and compare them with the recovered species/genotypes isolated from Jordanian patients. Three molecular-based assays (ITS1-PCR-RFLP, Nested ITS1-5.8S rDNA PCR, and Kinetoplast DNA PCR) followed by sequencing and phylogenetic analysis were undertaken and compared for their efficiency to confirm CL diagnosis and genotype the infecting Leishmania species. Thereafter, the evolutionary relationships among various Leishmania isolates from Syrian and Jordanian CL patients were elucidated. Results from the present study indicated that 20 and 9 out of the inspected 66 patients (39 Jordanian and 27 Syrian) were infected with L.
    [Show full text]
  • Pacific Insects Phlebotomic Sand Flies of Malaya And
    PACIFIC INSECTS Vol. 3, nos. 2-3 July 31, 1961 Organ of the program "Zoogeography and Evolution of Pacific Insects." Published by Entomology Department, Bishop Museum, Honolulu, Hawaii, U. S. A. Editorial committee: J. L. Gressitt (editor), J. R. Audy, D. E. Hardy, M. A. Lieftinck, T. C. Maa, I. M. Mackerras, L. W. Quate, J. J. H. Szent-Ivany, R. Traub, R. L. Usinger and K. Yasumatsu. Devoted to monographs and zoogeographical studies of insects and other terrestrial arthropods from the Pacific area, including eastern Asia, Australia and Antarctica. Normally to appear quarterly. PHLEBOTOMIC SAND FLIES OF MALAYA AND BORNEO (Diptera: Psychodidae) By Laurence W. Quate1 and G. B. Fairchild2 During field work by one of us (L. W. Q.) in Malaya and British North Borneo in 1958-59 special attention was paid to the collecting of Phlebotomus. The work has result­ ed in recording the genus from Borneo for the first time and finding a number of new species in the Indo-Malayan region. Contrary to Causey's observation (1938), sand flies are fairly numerous in Malaya as well as Borneo. Many more species will certainly be found, for most of the species treated herein were taken only during a three-month period in a few localities and, furthermore, we have in our collection a number of new species that are not being described because of inadequate series. The field work was financed from a research grant of the National Institutes of Health (Grant E-1723) supporting the B. P. Bishop Museum project, " South Pacific Insects of Public Health Importance." Some additional material was received from the Institute of Medical Research, Kuala Lumpur, Malaya through the courtesy of Dr.
    [Show full text]
  • Molecular Characterization of Leishmania RNA Virus 2 in Leishmania Major from Uzbekistan
    G C A T T A C G G C A T genes Article Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan 1, 2,3, 1,4 2 Yuliya Kleschenko y, Danyil Grybchuk y, Nadezhda S. Matveeva , Diego H. Macedo , Evgeny N. Ponirovsky 1, Alexander N. Lukashev 1 and Vyacheslav Yurchenko 1,2,* 1 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia; [email protected] (Y.K.); [email protected] (N.S.M.); [email protected] (E.N.P.); [email protected] (A.N.L.) 2 Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; [email protected] (D.G.); [email protected] (D.H.M.) 3 CEITEC—Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic 4 Department of Molecular Biology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +420-597092326 These authors contributed equally to this work. y Received: 19 September 2019; Accepted: 18 October 2019; Published: 21 October 2019 Abstract: Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L.
    [Show full text]
  • Identification of Wild-Caught Phlebotomine Sand Flies from Crete
    Dokianakis et al. Parasites & Vectors (2018) 11:94 DOI 10.1186/s13071-018-2676-0 RESEARCH Open Access Identification of wild-caught phlebotomine sand flies from Crete and Cyprus using DNA barcoding Emmanouil Dokianakis1, Nikolaos Tsirigotakis1, Vasiliki Christodoulou1, Nikos Poulakakis2,3 and Maria Antoniou1* Abstract Background: Phlebotomine sand flies (Diptera: Psychodidae) are vectors of Leishmania spp., protozoan parasites responsible for a group of neglected diseases called leishmaniases. Two sand fly genera, Phlebotomus and Sergentomyia, contain species that are present in the Mediterranean islands of Crete and Cyprus where the visceral (VL), cutaneous (CL) and canine (CanLei) leishmaniases are a public health concern. The risk of transmission of different Leishmania species can be studied in an area by monitoring their vectors. Sand fly species are traditionally identified using morphological characteristics but minute differences between individuals or populations could be overlooked leading to wrong epidemiological predictions. Molecular identification of these important vectors has become, therefore, an essential tool for research tasks concerning their geographical distribution which directly relates to leishmaniasis control efforts. DNA barcoding is a widely used molecular identification method for cataloguing animal species by sequencing a fragment of the mitochondrial gene encoding cytochrome oxidase I. Results: DNA barcoding was used to identify individuals of five sand fly species (Phlebotomus papatasi, P. similis, P. killicki, Sergentomyia minuta, S. dentata) circulating in the islands of Crete and Cyprus during the years 2011–2014. Phlebotomus papatasi is a known vector of zoonotic CL in the Middle East and it is found in both islands. Phlebotomus similis is the suspected vector of Leishmania tropica in Greece causing anthroponotic CL.
    [Show full text]
  • A Review on Biology, Epidemiology And
    iolog ter y & c P a a B r f a o s i l Journal of Bacteriology and t o Dawit et al., J Bacteriol Parasitol 2013, 4:2 a l n o r g u DOI: 10.4172/2155-9597.1000166 y o J Parasitology ISSN: 2155-9597 Research Article Open Access A Review on Biology, Epidemiology and Public Health Significance of Leishmaniasis Dawit G1, Girma Z1 and Simenew K1,2* 1College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia 2College of Agricultural Sciences, Dilla University, Dilla, Ethiopia Abstract Leishmaniasis is a major vector-borne disease caused by obligate intramacrophage protozoa of the genus Leishmania, and transmitted by the bite of phlebotomine female sand flies of the genera Phlebotomus and Lutzomyia, in the old and new worlds, respectively. Among 20 well-recognized Leishmania species known to infect humans, 18 have zoonotic nature, which include agents of visceral, cutaneous, and mucocutaneous forms of the disease, in both the old and new worlds. Currently, leishmaniasis show a wider geographic distribution and increased global incidence. Environmental, demographic and human behaviors contribute to the changing landscape for zoonotic cutaneous and visceral leishmaniasis. The primary reservoir hosts of Leishmania are sylvatic mammals such as forest rodents, hyraxes and wild canids, and dogs are the most important species among domesticated animals in the epidemiology of this disease. These parasites have two basic life cycle stages: one extracellular stage within the invertebrate host (phlebotomine sand fly), and one intracellular stage within a vertebrate host. Co-infection with HIV intensifies the burden of visceral and cutaneous leishmaniasis by causing severe forms and more difficult to manage.
    [Show full text]
  • INFECTIOUS DISEASES of ETHIOPIA Infectious Diseases of Ethiopia - 2011 Edition
    INFECTIOUS DISEASES OF ETHIOPIA Infectious Diseases of Ethiopia - 2011 edition Infectious Diseases of Ethiopia - 2011 edition Stephen Berger, MD Copyright © 2011 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-068-3 ISBN-10: 1-61755-068-X Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content: Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia – bacterial) or etiologic grouping(Coltiviruses – Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application.
    [Show full text]
  • The Maze Pathway of Coevolution: a Critical Review Over the Leishmania and Its Endosymbiotic History
    G C A T T A C G G C A T genes Review The Maze Pathway of Coevolution: A Critical Review over the Leishmania and Its Endosymbiotic History Lilian Motta Cantanhêde , Carlos Mata-Somarribas, Khaled Chourabi, Gabriela Pereira da Silva, Bruna Dias das Chagas, Luiza de Oliveira R. Pereira , Mariana Côrtes Boité and Elisa Cupolillo * Research on Leishmaniasis Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040360, Brazil; lilian.cantanhede@ioc.fiocruz.br (L.M.C.); carlos.somarribas@ioc.fiocruz.br (C.M.-S.); khaled.chourabi@ioc.fiocruz.br (K.C.); gabriela.silva@ioc.fiocruz.br (G.P.d.S.); bruna.chagas@ioc.fiocruz.br (B.D.d.C.); luizaper@ioc.fiocruz.br (L.d.O.R.P.); boitemc@ioc.fiocruz.br (M.C.B.) * Correspondence: elisa.cupolillo@ioc.fiocruz.br; Tel.: +55-21-38658177 Abstract: The description of the genus Leishmania as the causative agent of leishmaniasis occurred in the modern age. However, evolutionary studies suggest that the origin of Leishmania can be traced back to the Mesozoic era. Subsequently, during its evolutionary process, it achieved worldwide dispersion predating the breakup of the Gondwana supercontinent. It is assumed that this parasite evolved from monoxenic Trypanosomatidae. Phylogenetic studies locate dixenous Leishmania in a well-supported clade, in the recently named subfamily Leishmaniinae, which also includes monoxe- nous trypanosomatids. Virus-like particles have been reported in many species of this family. To date, several Leishmania species have been reported to be infected by Leishmania RNA virus (LRV) and Leishbunyavirus (LBV). Since the first descriptions of LRVs decades ago, differences in their genomic Citation: Cantanhêde, L.M.; structures have been highlighted, leading to the designation of LRV1 in L.(Viannia) species and LRV2 Mata-Somarribas, C.; Chourabi, K.; in L.(Leishmania) species.
    [Show full text]
  • Catalase in Leishmaniinae: with Me Or Against Me?
    Infection, Genetics and Evolution 50 (2017) 121–127 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Catalase in Leishmaniinae: With me or against me? Natalya Kraeva a,1, Eva Horáková b,1,AlexeiY.Kostygova,c,LuděkKořený b,d,AnzhelikaButenkoa, Vyacheslav Yurchenko a,b,e,⁎, Julius Lukeš b,f,g,⁎⁎ a Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic b Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic c Zoological Institute of the Russian Academy of Sciences, St. Petersburg 199034, Russia d Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom e Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic f Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic g Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada article info abstract Article history: The catalase gene is a virtually ubiquitous component of the eukaryotic genomes. It is also present in the Received 26 April 2016 monoxenous (i.e. parasitizing solely insects) trypanosomatids of the subfamily Leishmaniinae, which have ac- Received in revised form 24 June 2016 quired the enzyme by horizontal gene transfer from a bacterium. However, as shown here, the catalase gene Accepted 30 June 2016 was secondarily lost from the genomes of all Leishmania sequenced so far. Due to the potentially key regulatory Available online 2 July 2016 role of hydrogen peroxide in the inter-stagial transformation of Leishmania spp., this loss seems to be a necessary prerequisite for the emergence of a complex life cycle of these important human pathogens.
    [Show full text]
  • Distribution and Dispersal of Phlebotomus Papatasi (Diptera: Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev, Israel
    RESEARCH ARTICLE Distribution and Dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev, Israel Laor Orshan1*, Shirly Elbaz1, Yossi Ben-Ari2, Fouad Akad1, Ohad Afik1¤a, Ira Ben-Avi1, Debora Dias1, Dan Ish-Shalom3, Liora Studentsky1, Irina Zonstein1¤b 1 Laboratory of Entomology, Ministry of Health, Jerusalem, Israel, 2 Israel Nature and Parks Authority, a11111 Jerusalem, Israel, 3 Ministry of Environmental Protection, Southern District, Be'er Sheva, Israel ¤a Current Address: The Extension Service, Ministry of Agriculture and Rural Development, Beit Dagan, Israel ¤b Current Address: Department of Zoology, Tel Aviv University, Tel-Aviv, Israel * [email protected] OPEN ACCESS Abstract Citation: Orshan L, Elbaz S, Ben-Ari Y, Akad F, Afik O, Ben-Avi I, et al. (2016) Distribution and Dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev, Israel. PLoS Negl Trop Dis 10(7): Background e0004819. doi:10.1371/journal.pntd.0004819 Zoonotic cutaneous leishmaniasis has long been endemic in Israel. In recent years reported Editor: Hechmi Louzir, Institut Pasteur de Tunis, incidence of cutaneous leishmaniasis increased and endemic transmission is being TUNISIA observed in a growing number of communities in regions previously considered free of the Received: December 16, 2015 disease. Here we report the results of an intensive sand fly study carried out in a new Accepted: June 10, 2016 endemic focus of Leishmania major. The main objective was to establish a method and to Published: July 18, 2016 generate a data set to determine the exposure risk, sand fly populations' dynamics and evaluate the efficacy of an attempt to create "cordon sanitaire" devoid of active jird burrows Copyright: © 2016 Orshan et al.
    [Show full text]
  • Insights Into Microbial Evolution and Ecology from Genetic Analysis of Diverse Archaeological Materials
    !"#$%&'#($"')(*$+,)-$./(01)/2'$)"(."3(0+)/)%4( 5,)*(%0"0'$+(."./4#$#()5(3$10,#0(.,+&.0)/)%$+./( *.'0,$./#( ! ! ! ! ! "#$$%&'('#)*! ! +)!,-./#..!'0%! 1%2-#&%3%*'$!/)&!'0%!"%4&%%!)/! 5")6')&!)/!70#.)$)809:;70"<! ! ! ! =->3#''%?!')!'0%!@)-*6#.!)/!'0%!,(6-.'9!! )/!A#).)4#6(.!=6#%*6%$!! )/!'0%!,&#%?&#60!=60#..%&!B*#C%&$#'9!D%*(! ! >9!EF=6F!G&60(%).)4#6(.!=6#%*6%$!=-$(**(!=(>#*! >)&*!)*!HI!E(&60!JKKL!#*!M%N!O)&P!@#'9! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! R-'(60'%&S! JF!7&)/F!"&F!D)0(**%$!T&(-$%!;E(U!7.(*6P!V*$'#'-'%!/)&!'0%!=6#%*6%!)/!W-3(*!W#$')&9X!D%*(<! QF!7&)/F!"&F!@0&#$'#*(!Y(&#**%&!;E(U!7.(*6P!V*$'#'-'%!/)&!'0%!=6#%*6%!)/!W-3(*!W#$')&9X!D%*(<! ZF!"&F!V[(P#!@)3($!;A#)3%?#6#*%!V*$'#'-'%!)/!\(.%*6#(X!\(.%*6#(!]=8(#*^<! ! !"#$%%&'"(&)(*+*,$*%-&JK!D(*-(&!QHJ_! .$//"(,0,$*%&"$%#"("$12,&0+-&Q`!D-*#!QHJK! 30#&'"(&455"%,6$12"%&7"(,"$'$#8%#-&HJ!M)C%3>%&!QHJK! ! ! ! Q! ! ! 6.-/0()5(7)"'0"'#( JF! V*'&)?-6'#)*FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!`! JFJ! G*6#%*'!3#6&)>#(.!4%*)3#6$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!L! JFQ! =0#/'#*4!*(&&('#C%$!)*!'0%!)&#4#*$!)/!'->%&6-.)$#$FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!a! JFQFJ! +0%!&#$%!(*?!/(..!)/!'0%!E96)>(6'%&#-3!>)C#$!098)'0%$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!a! JFQFQ! G*6#%*'!"MG!(*?!'->%&6-.)$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!K! JFQFZ! "#$6&%8(*6#%$!>%'N%%*!?#//%&%*'!.#*%$!)/!%C#?%*6%!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JH!
    [Show full text]