Insights Into Microbial Evolution and Ecology from Genetic Analysis of Diverse Archaeological Materials

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into Microbial Evolution and Ecology from Genetic Analysis of Diverse Archaeological Materials !"#$%&'#($"')(*$+,)-$./(01)/2'$)"(."3(0+)/)%4( 5,)*(%0"0'$+(."./4#$#()5(3$10,#0(.,+&.0)/)%$+./( *.'0,$./#( ! ! ! ! ! "#$$%&'('#)*! ! +)!,-./#..!'0%! 1%2-#&%3%*'$!/)&!'0%!"%4&%%!)/! 5")6')&!)/!70#.)$)809:;70"<! ! ! ! =->3#''%?!')!'0%!@)-*6#.!)/!'0%!,(6-.'9!! )/!A#).)4#6(.!=6#%*6%$!! )/!'0%!,&#%?&#60!=60#..%&!B*#C%&$#'9!D%*(! ! >9!EF=6F!G&60(%).)4#6(.!=6#%*6%$!=-$(**(!=(>#*! >)&*!)*!HI!E(&60!JKKL!#*!M%N!O)&P!@#'9! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! R-'(60'%&S! JF!7&)/F!"&F!D)0(**%$!T&(-$%!;E(U!7.(*6P!V*$'#'-'%!/)&!'0%!=6#%*6%!)/!W-3(*!W#$')&9X!D%*(<! QF!7&)/F!"&F!@0&#$'#*(!Y(&#**%&!;E(U!7.(*6P!V*$'#'-'%!/)&!'0%!=6#%*6%!)/!W-3(*!W#$')&9X!D%*(<! ZF!"&F!V[(P#!@)3($!;A#)3%?#6#*%!V*$'#'-'%!)/!\(.%*6#(X!\(.%*6#(!]=8(#*^<! ! !"#$%%&'"(&)(*+*,$*%-&JK!D(*-(&!QHJ_! .$//"(,0,$*%&"$%#"("$12,&0+-&Q`!D-*#!QHJK! 30#&'"(&455"%,6$12"%&7"(,"$'$#8%#-&HJ!M)C%3>%&!QHJK! ! ! ! Q! ! ! 6.-/0()5(7)"'0"'#( JF! V*'&)?-6'#)*FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!`! JFJ! G*6#%*'!3#6&)>#(.!4%*)3#6$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!L! JFQ! =0#/'#*4!*(&&('#C%$!)*!'0%!)&#4#*$!)/!'->%&6-.)$#$FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!a! JFQFJ! +0%!&#$%!(*?!/(..!)/!'0%!E96)>(6'%&#-3!>)C#$!098)'0%$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!a! JFQFQ! G*6#%*'!"MG!(*?!'->%&6-.)$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!K! JFQFZ! "#$6&%8(*6#%$!>%'N%%*!?#//%&%*'!.#*%$!)/!%C#?%*6%!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JH! JFZ! G*6#%*'!3%'(4%*)3#6$!)/!0-3(*!3#6&)>#)'(!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JJ! JFZFJ! "%*'(.!6(.6-.-$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JQ! JFZFQ! 7(.%)/%6%$!(*?!6)8&).#'%$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZ! QF! G#3!)/!'0%!'0%$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!J`! ZF! bC%&C#%N!)/!3(*-$6&#8'$!(*?!(-'0)&c$!6)*'&#>-'#)*!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JI! ZFJ! E(*-$6&#8'!G!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JI! ZFQ! E(*-$6&#8'!A!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!J_! ZFZ! E(*-$6&#8'!@!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!Ja! `F! E(*-$6&#8'!G!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!QH! LF! E(*-$6&#8'!A!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!_I! IF! E(*-$6&#8'!@!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JHQ! _F! "#$6-$$#)*!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZQ! _FJ! @0(..%*4%$!#*!-*6)C%&#*4!'0%!)&#4#*$!)/!'->%&6-.)$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZQ! _FJFJ! G&60(%).)4#6(.!$)-&6%$!)/!E+A@!"MG!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZQ! _FJFQ! G-'0%*'#6('#)*!(*?!%*C#&)*3%*'(.!396)>(6'%&#(FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZ`! _FJFZ! @0(..%*4%$!)/!?%3)4&(80#6!#*/%&%*6%!(*?!3).%6-.(&!?('#*4!-$#*4!(*6#%*'!"MG ! JZ`! _FJF`! Y0%&%!')!(#3!/)&!/-'-&%!$'-?#%$FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZI! _FQ! @0(&(6'%&#d#*4!(*6#%*'!0-3(*!3#6&)>#)'(FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZ_! _FQFJ! ,(6#.#'('#*4!2-(.#'('#C%!#*'%&8&%'(>#.#'9!)/!.(&4%!3%'(4%*)3#6!?('($%'$!FFFFFFFFFFFFF!JZ_! _FQFQ! e#3#'('#)*$!)/!3)?%&*!?('(>($%$!(*?!'(U)*)3#6!6.($$#/#%&$!FFFFFFFFFFFFFFFFFFFFFFFFFFF!JZa! _FQFZ! V*/%&&#*4!3#6&)>#)3%!?9*(3#6$!(*?!:*)&3(.f!3#6&)>#)3%$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZa! _FQF`! "%*'#*!($!(!8)'%*'#(.!$)-&6%!/)&!)&(.!3#6&)>%$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JZK! _FZ! @0(..%*4%$!#*!$'-?9#*4!(*6#%*'!%-P(&9)'#6!8(&($#'%$!N#'0!(*6#%*'!"MG!FFFFFFFFFFFFFF!J`H! _F`! @)*6.-$#)*!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!J`J! aF! 1%/%&%*6%$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!J`Z! KF! =-33(&9!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JIQ! JHF! g-$(33%*/($$-*4!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JI`! JJF! h#4%*$'i*?#4P%#'$%&P.(%&-*4!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JII! JQF! @-&&#6-.-3!\#'(%!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JI_! JZF! G6P*)N.%?43%*'$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!J_J! ! Z! ( 89( !"',)32+'$)"( +0%!$'-?9!)/!0-3(*!0%(.'0!)C%&!'#3%!)//%&$!C(.-(>.%!8('0N(9$!/)&!-*?%&$'(*?#*4! 3-.'#8.%!($8%6'$!)/!0-3(*!%U8%&#%*6%!(*?!>#).)49F!"%'%&3#*#*4!'0%!8&%$%*6%!)/!(!?#$%($%!#*! (*!(*6#%*'!#*?#C#?-(.!)&!6)33-*#'9!6(*!4#C%!-$!#*$#40'$!#*')!?(#.9!.#/%!?-&#*4!'0('!'#3%X!(*?! 6)38(&#*4!0-3(*!3#6&)>#)'(!>%'N%%*!?#//%&%*'!0-3(*!4&)-8$!)C%&!'#3%!(*?!$8(6%!6(*!)//%&! #*$#40'$!#*')!>%0(C#)&!(*?!?#%'F!G$$%$$#*4!'0%!0%(.'0!)/!8($'!8)8-.('#)*$!3(9!8&)C#?%!*%N! 8%&$8%6'#C%$!)*!6)*6)3#'(*'!$)6#(.!)&!8).#'#6(.!60(*4%$X!(*?!6)*'&#>-'%!')!)-&!-*?%&$'(*?#*4! )/!0)N!'0)$%!8)8-.('#)*$!3(*(4%?X!)&!/(#.%?!')!3(*(4%X!6&#$%$!(*?!60(*4%F!b*!(!>&)(?%&! .%C%.X!#?%*'#/9#*4!(*?!#*'%&&)4('#*4!0-3(*#'9c$!&%.('#)*$0#8!N#'0!#*/%6'#)-$!(*?!6)33%*$(.! 3#6&)>%$!3(9!)//%&!#*$#40'$!#*')!0-3(*!%C).-'#)*!(*?!(?(8'('#)*F!E)$'!0)8%/-..9X!'0%! P*)N.%?4%!4(#*%?!/&)3!'0%!>($#6!$6#%*6%!)/!8($'!0-3(*!0%(.'0!3(9!)*%!?(9!.%(?!')! ?#$6)C%&#%$!'0('!6(*!>%!(88.#%?!')!3)?%&*!3%?#6#*%F!,)&!%U(38.%X!'0%!%C).-'#)*(&9!0#$')&9!)/! (!$8%6#/#6!8('0)4%*!3(9!(..)N!-$!')!-*?%&$'(*?!0)N!#'!3(9!>%0(C%!#*!'0%!/-'-&%X!(*?!'0%! 6)*$'#'-'#)*!)/!(*6#%*'!0-3(*!3#6&)>#)'(!3(9!(..)N!-$!')!#*'%&&)4('%!N0('!'(U(!0(C%!>%%*! 4(#*%?!(*?!.)$'!)C%&!'#3%!#*!6%&'(#*!8)8-.('#)*$!(*?!N0('!'0#$!3(9!3%(*!/)&!3)?%&*!)&(.!(*?! 4-'!0%(.'0F! +0%!$'-?9!)/!8($'!0-3(*!0%(.'0!0($!(.N(9$X!>9!*%6%$$#'9X!>%%*!(*!#*'%&?#$6#8.#*(&9! %*?%(C)&F!+0%!'($P!)/!?#(4*)$#$X!?#//#6-.'!#*!.#C#*4!8)8-.('#)*$X!>%6)3%$!#*6&%($#*4.9! 6)38.#6('%?!N#'0!'0%!8($$(4%!)/!'#3%X!(*?!'0%!3%(*#*4!(*?!C(.-%!)/!0#$')&#6(.!?#(4*)$#$X! ?%8%*?#*4!)*!'0%!'0%)&%'#6(.!'#?%$!(3)*4!3%?#6(.!0#$')&#(*$X!3)?%&*!6.#*#6#(*$X!(*?! (*'0&)8).)4#$'$X!3(9!/.-6'-('%!;G&&#d(>(.(4(X!QHHQj!Y(.?&)*X!QHHK<F!W#$')&#6(.!?)6-3%*'('#)*! )&!(&'!8#%6%$!3(9!)//%&!C%&>(.!?%$6&#8'#)*$!)&!C#$-(.!?%8#6'#)*$!)/!#..!0%(.'0X!>-'!3(9!>%!)8%*! ')!>&)(?!#*'%&8&%'('#)*!?-%!')!?#//%&#*4!3%?#6(.!6)*C%*'#)*$!(*?!'%&3#*).)49!)C%&!'#3%!(*?! $8(6%X!%3>%..#$03%*'!)/!'0%!(&'#$'X!)&!%C%*!8).#'#6(.!6)*6%&*$!'0('!3(9!)&!3(9!*)'!>%!%C#?%*'! ')!'0%!$60).(&!(''%38'#*4!(!?#(4*)$#$!;E#'60%..X!QHJJ<F!W%(.'0!6(*!(.$)!>%!#*/%&&%?!/&)3! 0-3(*!&%3(#*$!#*!(&60(%).)4#6(.!6)*'%U'$!)&!'0%!(&60(%).)4#6(.!6)*'%U'$!'0%3$%.C%$F!E($$! 4&(C%$!)&!3-.'#8.%!>-&#(.$X!/)&!%U(38.%X!6)-.?!$#4*(.!(*!%8#?%3#6!%C%*'!;A.(P%.9!(*?! "%'N%#.%&kA.(P%.9X!JKaKj!1-44X!QHHH<F!"#$%($%!8&)6%$$%$!6(*!.%(C%!'&(6%$!#*!$-&C#C#*4!$)/'! '#$$-%!#*!'0%!6($%!)/!3-33#/#%?!#*?#C#?-(.$!)&!#*!0(&?!'#$$-%X!(*?!($!0-3(*!&%3(#*$!'0('! $-&C#C%!#*!'0%!(&60(%).)4#6(.!&%6)&?!(&%!3)$'.9!$P%.%')*#d%?X!>)*%!'%*?$!')!>%!'0%!3)$'! 6)33)*!3%?#-3!/&)3!N0#60!8(.%)8('0).)4#$'$!(''%38'!')!?#(4*)$%!?%6%($%?X! (&60(%).)4#6(.!#*?#C#?-(.$F!W)N%C%&X!8('0).)4#6(.!60(*4%$!#*!>)*%!(&%!*)'!(.N(9$!$8%6#/#6!')! (!$#*4.%!6)*?#'#)*!)&!#*/%6'#)*X!(*?!*)'!(..!6)*?#'#)*$!(*?!#*/%6'#)*$!.%(C%!$#4*$!#*!'0%! ! `! "#$%&'()$*&#! ! $P%.%')*F!,)&!'0)$%!6)*?#'#)*$!'0('!10%!.%(C%!$#4*$!#*!'0%!$P%.%')*X!N0%'0%&!)&!*)'!'0#$!)66-&$! ?%8%*?$!)*!*-3%&)-$!/(6')&$X!$-60!($X!/)&!%U(38.%X!'0%!#33-*)6)38%'%*69!)/!'0%! #*?#C#?-(.!)&!'0%!$%C%&#'9!)/!'0%!#*/%6'#)*F!hC%*!#*!'0%!%C%*'!'0('!'0%&%!(&%!8('0)4*)3)*#6! $#4*$!)/!(!$8%6#/#6!#*/%6'#)*!#?%*'#/#%?!#*!(!$P%.%')*#d%?!#*?#C#?-(.X!'0('!#*/)&3('#)*!6(**)'!>%! -$%?!')!#*/%&!%C).-'#)*(&9!?9*(3#6$!)/!'0%!#*/%6'#*4!)&4(*#$3F!! G&60(%)4%*%'#6$X!N#'0!%U#$'#*4!'%60*).)4#%$!(*?!#*!#'$!6-&&%*'!$'('%k)/k'0%k(&'X!6(*!)//%&! ?#&%6'!3).%6-.(&!%C#?%*6%!)/!#*?#C#?-(.!3#6&)>%$!(*?!3#6&)>#(.!6)33-*#'#%$!#*!'0%!8($'F!V/!N%! (&%!(>.%!')!8($$!'0%!'0&%$0).?!)/!(62-#&#*4!'&-$'N)&'09!(*6#%*'!"MGX!N%!6(*!'%..!'0%!$')&9!)/! %C).-'#)*(&9!60(*4%!#*!(!8('0)4%*!?)N*!')!'0%!.%C%.!)/!(!$#*4.%!3-'('#)*X!(*?!#..-$'&('%!'0%! $#3#.(&#'#%$!(*?!?#//%&%*6%$!>%'N%%*!0-3(*k($$)6#('%?!6)33-*#'#%$!)/!3#6&))&4(*#$3$!)C%&! '#3%!(*?!$8(6%F!W)N%C%&X!3#6&)>#(.!(&60(%)4%*%'#6$!#$!$'#..!(!9)-*4!/#%.?F!+0#$!'0%$#$! #..-$'&('%$!'0%!8)'%*'#(.!)/!(*6#%*'!"MG!')!(*$N%&!&%.%C(*'!2-%$'#)*$!(>)-'!0-3(*!0%(.'0!>9! d))3#*4!#*!')!(!$#*4.%!8('0)4%*!4%*)3%!%*&#60%?!/&)3!(!3%'(4%*)3#6!>(6P4&)-*?!(*?! d))3#*4!)-'!')!N0).%!3#6&)>#(.!6)33-*#'#%$!%U'&(6'%?!/&)3!(&60(%).)4#6(.!3('%&#(.$F!W%&%X! '0%!)&#4#*$!)/!(!/(3#.9!)/!8('0)4%*$!l!'0%!9:1*;01,"($8+&,8;"(186*/$/&6)38.%U!;E+A@<!l!#$! /-&'0%&!%.-6#?('%?!N#'0!(!$#*4.%!(*6#%*'!4%*)3%X!(*?!3%'(4%*)3#6$!#$!.%C%&(4%?!')!%U8.)&%! 8&%$%&C('#)*!?9*(3#6$!/)&!0-3(*k($$)6#('%?!3#6&)>#(.!"MG!#*!?#//%&%*'!(&60(%).)4#6(.! 6)*'%U'$F!+0%!%*6.)$%?!8&)m%6'$!%3%&4%?!/&)3!3%'(4%*)3#6!$0)'4-*!$6&%%*#*4!)/!"MG! %U'&(6'%?!/&)3!(!6(.6#/#%?!.-*4!*)?-.%X!?%*'#*X!?%*'(.!6(.6-.-$X!(*?!>-.P!.('&#*%!$%?#3%*'$F!
Recommended publications
  • Detection of Leishmania Aethiopica in Paraffin-Embedded Skin Biopsies Using the Polymerase Chain Reaction T
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Österreichischen Gesellschaft für Tropenmedizin und Parasitologie Jahr/Year: 1994 Band/Volume: 16 Autor(en)/Author(s): Laskay T., Miko T. L., Teferedegn H., Negesse Y., Rodgers M. R., Solbach W., Röllinghoff M., Frommel D. Artikel/Article: Onchozerkose-Kontrolle in Mali - Darstellung eines Kommunikationsdefizites und seine Entwicklung. 141-146 ©Österr. Ges. f. Tropenmedizin u. Parasitologie, download unter www.biologiezentrum.at Mitt. Österr. Ges. Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia (Director: Dr. D. Frommel) (1) Tropenmed. Parasitol. 16 (1994) All Africa Leprosy Rehabilitation and Training Center (ALERT), Addis Ababa, Ethiopia 141 - 146 (Managing Director: Mr. J. N. Alldred) (2) Department of Tropical Public Health, Harvard School of Public Health, Boston, MA (Head of Unit: Dr. Dyann Wirth) (3) Institute for Clinical Microbiology, Univerity of Erlangen-Nürnberg, Erlangen, F. R. G. (Director: Prof. Dr. M. Röllinghoff) (4) Detection of Leishmania aethiopica in paraffin-embedded skin biopsies using the polymerase chain reaction T. Laskay14, T. L. Miko1-2, H. Teferedegn1, Y. Negesse12, M. R. Rodgers3, W. Solbach4, M. Röllinghoff4, D. Frommel1 Introduction Cutaneous leishmaniasis (CL) is a serious public health problem in several areas of the world. Current reports indicate that the prevalence of the disease is increasing in many countries (4). One major focus of CL in the Old World is found in Ethiopia where the aetiological agent is Leishmania aethiopica (1, 2, 7). At present diagnosis relies on the detection of the parasite in smears or skin biopsy specimens by histopathological examination and/or by in vitro culture.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion Anna Karnkowska,*,1,2 Sebastian C
    The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion Anna Karnkowska,*,1,2 Sebastian C. Treitli,1 Ondrej Brzon, 1 Lukas Novak,1 Vojtech Vacek,1 Petr Soukal,1 Lael D. Barlow,3 Emily K. Herman,3 Shweta V. Pipaliya,3 TomasPanek,4 David Zihala, 4 Romana Petrzelkova,4 Anzhelika Butenko,4 Laura Eme,5,6 Courtney W. Stairs,5,6 Andrew J. Roger,5 Marek Elias,4,7 Joel B. Dacks,3 and Vladimır Hampl*,1 1Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic 2Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland 3Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada 4Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Downloaded from https://academic.oup.com/mbe/article-abstract/36/10/2292/5525708 by guest on 13 January 2020 5Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada 6Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden 7Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic *Corresponding authors: E-mails: [email protected]; [email protected]. Associate editor: Fabia Ursula Battistuzzi Abstract The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organ- elles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • University of Copenhagen
    Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes Heiss, Aaron A.; Kolisko, Martin; Ekelund, Fleming; Brown, Matthew W.; Roger, Andrew J.; Simpson, Alastair G. B. Published in: Royal Society Open Science DOI: 10.1098/rsos.171707 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiss, A. A., Kolisko, M., Ekelund, F., Brown, M. W., Roger, A. J., & Simpson, A. G. B. (2018). Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. Royal Society Open Science, 5(4), 1-13. [171707]. https://doi.org/10.1098/rsos.171707 Download date: 09. Apr. 2020 Downloaded from http://rsos.royalsocietypublishing.org/ on September 28, 2018 Combined morphological and phylogenomic rsos.royalsocietypublishing.org re-examination of Research malawimonads, a critical Cite this article: Heiss AA, Kolisko M, Ekelund taxon for inferring the F,BrownMW,RogerAJ,SimpsonAGB.2018 Combined morphological and phylogenomic re-examination of malawimonads, a critical evolutionary history taxon for inferring the evolutionary history of eukaryotes. R. Soc. open sci. 5: 171707. of eukaryotes http://dx.doi.org/10.1098/rsos.171707 Aaron A. Heiss1,2,†, Martin Kolisko3,4,†, Fleming Ekelund5, Matthew W. Brown6,AndrewJ.Roger3 and Received: 23 October 2017 2 Accepted: 6 March 2018 Alastair G. B. Simpson 1Department of Invertebrate Zoology
    [Show full text]
  • Barthelonids Represent a Deep-Branching Metamonad Clade with Mitochondrion-Related Organelles Generating No
    bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related 4 organelles generating no ATP. 5 6 Euki Yazaki1*, Keitaro Kume2, Takashi Shiratori3, Yana Eglit 4,5,, Goro Tanifuji6, Ryo 7 Harada7, Alastair G.B. Simpson4,5, Ken-ichiro Ishida7,8, Tetsuo Hashimoto7,8 and Yuji 8 Inagaki7,9* 9 10 1Department of Biochemistry and Molecular Biology, Graduate School and Faculty of 11 Medicine, The University of Tokyo, Tokyo, Japan 12 2Faculty of Medicine, University of Tsukuba, Ibaraki, Japan 13 3Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, 14 Yokosuka, Japan 15 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 16 5Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 17 Halifax, Nova Scotia, Canada 18 6Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan 19 7Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 20 Ibaraki, Japan 21 8Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 22 9Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 23 24 Running head: Phylogeny and putative MRO functions in a new metamonad clade. 25 26 *Correspondence addressed to Euki Yazaki, [email protected] and Yuji Inagaki, 27 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019.
    [Show full text]
  • Molecular Characterization of Leishmania RNA Virus 2 in Leishmania Major from Uzbekistan
    G C A T T A C G G C A T genes Article Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan 1, 2,3, 1,4 2 Yuliya Kleschenko y, Danyil Grybchuk y, Nadezhda S. Matveeva , Diego H. Macedo , Evgeny N. Ponirovsky 1, Alexander N. Lukashev 1 and Vyacheslav Yurchenko 1,2,* 1 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia; [email protected] (Y.K.); [email protected] (N.S.M.); [email protected] (E.N.P.); [email protected] (A.N.L.) 2 Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; [email protected] (D.G.); [email protected] (D.H.M.) 3 CEITEC—Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic 4 Department of Molecular Biology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +420-597092326 These authors contributed equally to this work. y Received: 19 September 2019; Accepted: 18 October 2019; Published: 21 October 2019 Abstract: Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L.
    [Show full text]
  • Trichonympha Cf
    MOLECULAR PHYLOGENETICS OF TRICHONYMPHA CF. COLLARIS AND A PUTATIVE PYRSONYMPHID: THE RELEVANCE TO THE ORIGIN OF SEX by JOEL BRYAN DACKS B.Sc. The University of Alberta, 1995 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER'S OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1998 © Joel Bryan Dacks, 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ~2—oc)^Oa^ The University of British Columbia Vancouver, Canada Date {X^ZY Z- V. /^P DE-6 (2/88) Abstract Why sex evolved is one of the central questions in evolutionary genetics. To address this question I have undertaken a molecular phylogenetic study of two candidate lineages to determine the first sexual line. In my thesis the hypermastigotes are confirmed as closely related to the trichomonads in the phylum Parabasalia and found to be more deeply divergent than a putative pyrsonymphid. This means that the Parabasalia are the first sexual lineage. From this I go on to infer that the ancestral sexual cycle included facultative sex.
    [Show full text]
  • Phd Thesis Nico Weber
    Computational Approaches for Analyzing Ancient Genomes and Modern Metagenomes Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Dipl.-Inform. (Bioinformatik) Nico Weber aus Oberhausen Tübingen 2013 Tag der mündlichen Prüfung: 06.02.2014 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Daniel H. Huson 2. Berichterstatter: Prof. Dr. Johannes Krause Abstract Modern genomics entered a new era with the invention of next-generation sequencing techniques. Technical progress, high throughput and reasonably cheap costs of the systems enable us to look into the genomic sequences of whole communities or even extinct species. In the first part of this work we present and discuss state-of-the-art methods for analyzing metagenomes efficiently. As the assignment of sequencing reads to known species or functions is one key element in the analysis we discuss currently used methods. Those methods are usually either slow or do not provide all necessary information, such as genome alignments, for a detailed analysis. Here we present a novel approach, which is faster compared to previous methods while still providing genome alignments. Database composition and the assignment of database entries to species or functions is an equally important step during a metagenomic analysis. We inspect how well the taxonomy is covered by commonly used databases such as the NCBI-NR database. We also evaluate the efficiency of assignment methods using either plain text or RefSeq accession numbers to map reference sequences to taxa or functions. In this context we present a method using a the GenBank identifier for classifying reference sequences.
    [Show full text]
  • A Review on Biology, Epidemiology And
    iolog ter y & c P a a B r f a o s i l Journal of Bacteriology and t o Dawit et al., J Bacteriol Parasitol 2013, 4:2 a l n o r g u DOI: 10.4172/2155-9597.1000166 y o J Parasitology ISSN: 2155-9597 Research Article Open Access A Review on Biology, Epidemiology and Public Health Significance of Leishmaniasis Dawit G1, Girma Z1 and Simenew K1,2* 1College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia 2College of Agricultural Sciences, Dilla University, Dilla, Ethiopia Abstract Leishmaniasis is a major vector-borne disease caused by obligate intramacrophage protozoa of the genus Leishmania, and transmitted by the bite of phlebotomine female sand flies of the genera Phlebotomus and Lutzomyia, in the old and new worlds, respectively. Among 20 well-recognized Leishmania species known to infect humans, 18 have zoonotic nature, which include agents of visceral, cutaneous, and mucocutaneous forms of the disease, in both the old and new worlds. Currently, leishmaniasis show a wider geographic distribution and increased global incidence. Environmental, demographic and human behaviors contribute to the changing landscape for zoonotic cutaneous and visceral leishmaniasis. The primary reservoir hosts of Leishmania are sylvatic mammals such as forest rodents, hyraxes and wild canids, and dogs are the most important species among domesticated animals in the epidemiology of this disease. These parasites have two basic life cycle stages: one extracellular stage within the invertebrate host (phlebotomine sand fly), and one intracellular stage within a vertebrate host. Co-infection with HIV intensifies the burden of visceral and cutaneous leishmaniasis by causing severe forms and more difficult to manage.
    [Show full text]
  • INFECTIOUS DISEASES of ETHIOPIA Infectious Diseases of Ethiopia - 2011 Edition
    INFECTIOUS DISEASES OF ETHIOPIA Infectious Diseases of Ethiopia - 2011 edition Infectious Diseases of Ethiopia - 2011 edition Stephen Berger, MD Copyright © 2011 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-068-3 ISBN-10: 1-61755-068-X Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content: Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia – bacterial) or etiologic grouping(Coltiviruses – Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application.
    [Show full text]