Association of Dopamine Agonist Use with Impulse Control Disorders in Parkinson Disease

Total Page:16

File Type:pdf, Size:1020Kb

Association of Dopamine Agonist Use with Impulse Control Disorders in Parkinson Disease ORIGINAL CONTRIBUTION Association of Dopamine Agonist Use With Impulse Control Disorders in Parkinson Disease Daniel Weintraub, MD; Andrew D. Siderowf, MD, MSCE; Marc N. Potenza, MD, PhD; Joseph Goveas, MD; Knashawn H. Morales, ScD; John E. Duda, MD; Paul J. Moberg, PhD; Matthew B. Stern, MD Objective: To determine the frequency and correlates of cluding 11 (4.0%) with an active ICD. Compulsive gam- impulse control disorders (ICDs) in Parkinson disease (PD). bling and compulsive sexual behavior were equally com- mon. In a multivariate model, treatment with a dopamine Design: An unstructured screening interview for ICDs agonist (P=.01) and a history of ICD symptoms prior to (compulsive gambling, buying, and sexual behavior) fol- PD onset (P=.02) predicted current ICD. There were no lowed by a telephone-administered structured inter- differences between the dopamine agonists in their as- view for screen-positive patients. sociation with ICDs (P=.21), and daily doses of dopa- Setting: Two university-affiliated movement disorders mine agonists were higher in patients with an ICD than centers. in dopamine agonist–treated patients without an ICD (PϽ.001). Participants: A convenience sample of 272 patients with idiopathic PD who were screened for psychiatric com- Conclusions: Patients with PD treated with a dopa- plications. mine agonist should be made aware of the risk of devel- oping an ICD and monitored clinically. Because dopa- Main Outcome Measures: Presence of compulsive mine agonists are increasingly being used for other gambling, buying, or sexual behavior as assessed by the indications, future research should assess the dopamine Minnesota Impulsive Disorders Interview. agonist–associated risk for ICDs in other populations. Results: Eighteen patients (6.6%) with PD met criteria for an ICD at some point during the course of PD, in- Arch Neurol. 2006;63:969-973 ECENT OBSERVATIONAL case series, all 11 patients with PD identi- studies suggest that im- fied as meeting DSM-IV criteria for patho- pulse control disorders logical gambling were taking a dopamine (ICDs), particularly patho- agonist, 9 of whom were taking pramipex- logical gambling, may have ole and 2, ropinirole hydrochloride.3 increased frequency in Parkinson disease Regarding other ICDs in PD, in a series R1-3 (PD). Impulse control disorders consti- of 15 patients with either PD or multiple sys- Author Affiliations: tute a group of psychiatric disorders in tem atrophy and compulsive hypersexual- Departments of Psychiatry DSM-IV-TR,4 their essential feature being ity, dopamine agonist treatment was impli- (Drs Weintraub, Goveas, and a failure to resist an impulse, drive, or cated as the cause of the behavior in 14 Moberg), Neurology 7 (Drs Weintraub, Siderowf, temptation to perform an act that is harm- cases. There have also been anecdotal re- Duda, Moberg, and Stern), and ful to the person or to others. Other ICDs ports of compulsive buying in association 8 Biostatistics and Epidemiology without formal diagnostic criteria in DSM- with dopamine replacement therapies. (Dr Morales), University of IV-TR include compulsive sexual behav- We report the results of a screening and Pennsylvania, and Parkinson’s ior and compulsive buying.5 assessment study of ICDs in PD investi- Disease Research, Education, Although there are case reports of le- gating the: (1) frequencies of compulsive and Clinical Center vodopa-induced ICDs in PD,6 recent case buying, gambling, and sexual behaviors; (Drs Weintraub, Duda, Moberg, series have implicated treatment with (2) demographic and clinical correlates of and Stern) and Mental Illness dopamine agonists as a more frequent the aforementioned ICDs; and (3) asso- Research, Education, and cause of pathological gambling. Driver- ciation between ICDs and dopamine ago- Clinical Center (Dr Weintraub), 2 Philadelphia Veterans Affairs Dunckley et al identified 9 patients (0.5% nist use. We hypothesized that ICDs in PD Medical Center, Philadelphia; of clinic sample) with a documentation of are associated with dopamine agonist treat- Department of Psychiatry, pathological gambling, 8 of whom were ment and that this association is dose de- Yale University, New Haven, treated with pramipexole dihydrochloride pendent and similar across the entire class Conn (Dr Potenza). and 1 with pergolide mesylate. In another of dopamine agonists. (REPRINTED) ARCH NEUROL / VOL 63, JULY 2006 WWW.ARCHNEUROL.COM 969 ©2006 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 METHODS culated both for dopamine agonists only (dopamine agonist LEDD) and for dopamine agonistsϩlevodopa (total LEDD). To probe for possible risk factors for the development of ICDs PARTICIPANTS in PD, data were obtained for factors that have been reported to be associated with ICDs in PD (type and dose of dopamine The study population was outpatients diagnosed with idio- replacement therapy, disease duration, age, and sex)1-3 or that pathic PD, predominantly of mild to moderate severity, con- were factors of interest (history of ICD behavior, global cog- firmed by a movement disorders specialist. Subjects were es- nition, educational level, and marital status). For the pur- tablished patients at 1 of 2 movement disorders centers (either poses of this study, dopamine agonists were considered to be the University of Pennsylvania or the Philadelphia Veterans Af- pramipexole, ropinirole, and pergolide. Amantadine hydro- fairs Medical Center) and were thought to represent a cross- chloride, which has an unclear mechanism of action but has section of the clinics’ populations, save the exclusion of pa- some dopamine agonist properties,15 was considered sepa- tients unable to provide informed consent because of cognitive rately, and no patient was prescribed bromocriptine mesylate impairment. Participants completed a psychiatric screening in- or apomorphine hydrochloride. Reliable data were not avail- terview as part of a study of the frequency and correlates of de- able for the duration of treatment with dopamine replacement pression in PD. The institutional review boards at the 2 insti- therapies. All clinical and demographic data were obtained di- tutions approved the study, and written informed consent was rectly from the patient during the screening interview and, when obtained from all subjects. possible, verified by medical record review. DATA COLLECTION AND MEASURES ANALYSIS Patients were screened between July 2004 and June 2005. Movement disorders professionals were instructed to refer Demographic and clinical characteristics of ICD and non-ICD any willing patient with PD, without regard for their psychi- subjects were compared using a Fisher exact test for categori- atric status (eg, no patient was referred for having an ICD), cal variables and the Wilcoxon 2-sample test for continuous for the screening interview at the conclusion of his or her variables. A comparison of the frequency of ICDs on different clinic appointment. dopamine agonists was made using a Fisher exact test. The as- Two trained research assistants administered the screen- sociation between dopamine agonist dosage and ICDs was de- ing battery, which included open-ended questions about the termined using the Wilcoxon 2-sample test. Variables signifi- existence (lifetime, anytime during PD, and currently) of re- cant at the 0.1 significance level (uncorrected for multiple current compulsive buying, gambling, or sexual behaviors. Sub- comparisons) in the univariate analysis were entered as inde- jects were also administered the 15-item Geriatric Depression pendent variables in an exact logistic regression model, with Scale9 and the Mini-Mental State Examination10 as part of the presence of an active ICD as the dependent variable. For the screening process. logistic regression model, all continuous measures were di- Those who screened positive for an ICD during the chotomized at the median. Results of the exact logistic regres- course of PD were contacted by telephone in August or Sep- sion model are presented in terms of odds ratios, 95% confi- tember 2005 by 1 of us (D.W. or J.G.) and administered a dence intervals, and P values. Analyses were performed with modified Minnesota Impulsive Disorders Interview (MIDI),11 SPSS version 13.0 (SPSS Inc, Chicago, Ill) and SAS version 9.1 which includes queries for the presence of clinically signifi- (SAS Institute, Inc, Cary, NC). cant compulsive gambling, sexual, and buying behaviors. Patients were instructed to answer the questions based on RESULTS their state at the time they were symptomatic. Impulse con- trol disorders were defined as answering in the affirmative to 1 (compulsive sexual behavior and compulsive shopping) or PATIENT CHARACTERISTICS 2 (compulsive gambling) gateway questions plus an affirma- tive answer to 1 or more of the remaining questions of the Two hundred seventy-two patients, ranging in age from relevant ICD module of the MIDI. The same threshold has 35 to 91 years, completed the screening process. The use been used to define problem gambling in other studies.12 of the Philadelphia Veterans Affairs Medical Center as a The MIDI was administered to confirm the presence of ICDs site led to a preponderance of men in the study popula- during the course of PD only (ie, not applied to pre-PD– tion. One half of subjects (137 [50.4%] of 272) were tak- onset ICD symptoms). ing a dopamine agonist at screening. For patients taking To verify data accuracy, the study primary investigator (D.W.) reviewed the medical records
Recommended publications
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • Pramipexole V2.1 Last Reviewed: 22/04/2021 Review Date: 22/04/2024
    Pramipexole V2.1 Last reviewed: 22/04/2021 Review date: 22/04/2024 Pramipexole Traffic light classification- Amber 2 Information sheet for Primary Care Prescribers CLINICAL INFORMATION Key points/interactions Nausea is a common early side effect but usually responds to domperidone (10mg tds, or lowest effective dose – see MHRA advice) Ropinirole MR is first line dopamine agonist. Pramipexole MR should be reserved for patients in whom this is not suitable- see formulary. Dopamine agonists may cause compulsive/addictive behaviours such as gambling, compulsive shopping and hyper sexuality. Patients rarely recognise such changes as side effects and rarely report them unless specifically asked. Licensed Indications Treatment of idiopathic Parkinson's disease. Pramipexole may be used alone (without levodopa) or in combination with levodopa throughout the disease, through to late stages when the effect of levodopa wears off or becomes inconsistent and fluctuations of the therapeutic effect occur (end of dose or “on-off” fluctuations). Therapeutic Summary As per the licensed indication. NICE recommendations for the use of Pramipexole in Parkinson’s disease are: Consider a choice of dopamine agonists, levodopa or monoamine oxidase B (MAO-B) inhibitors for people in the early stages of Parkinson's disease whose motor symptoms do not impact their quality of life. Do not offer ergot-derived dopamine agonists as first-line treatment for Parkinson's disease. Offer a choice of dopamine agonists, MAO-B inhibitors or catechol-O-methyltransferase (COMT)
    [Show full text]
  • List Item Pramipexole Teva
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Pramipexole Teva 0.088 mg tablets Pramipexole Teva 0.18 mg tablets Pramipexole Teva 0.35 mg tablets Pramipexole Teva 0.7 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Pramipexole Teva 0.088 mg tablets Each tablet contains 0.125 mg pramipexole dihydrochloride monohydrate equivalent to 0.088 mg pramipexole. Pramipexole Teva 0.18 mg tablets Each tablet contains 0.25 mg pramipexole dihydrochloride monohydrate equivalent to 0.18 mg pramipexole. Pramipexole Teva 0.35 mg tablets Each tablet contains 0.5 mg pramipexole dihydrochloride monohydrate equivalent to 0.35 mg pramipexole. Pramipexole Teva 0.7 mg tablets Each tablet contains 1.0 mg pramipexole dihydrochloride monohydrate equivalent to 0.7 mg pramipexole. Please note: Pramipexole doses as published in the literature refer to the salt form. Therefore, doses will be expressed in terms of both pramipexole base and pramipexole salt (in brackets). For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Tablet Pramipexole Teva 0.088 mg tablets White, round, flat face bevel edge tablet, 5.55 mm diameter, embossed with “93” on one side and “P1” on the other side. Pramipexole Teva 0.18 mg tablets White, round, flat face bevel edge tablet, 7.00 mm diameter, embossed with "P2" over "P2" on the scored side and "93" on the other side. The tablet can be divided into equal halves. Pramipexole Teva 0.35 mg tablets White to off-white, oval, biconvex tablets, engraved with 9 vertical scoreline 3 on the scored side, and 8023 on the other side.
    [Show full text]
  • Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters
    1521-0103/359/1/159–170$25.00 http://dx.doi.org/10.1124/jpet.116.235838 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:159–170, October 2016 U.S. Government work not protected by U.S. copyright Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters Adem Can,1 Panos Zanos,1 Ruin Moaddel, Hye Jin Kang, Katinia S. S. Dossou, Irving W. Wainer, Joseph F. Cheer, Douglas O. Frost, Xi-Ping Huang, and Todd D. Gould Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.) Received June 14, 2016; accepted July 27, 2016 ABSTRACT Following administration at subanesthetic doses, (R,S)-ketamine mesolimbic DA release and decay using fast-scan cyclic (ketamine) induces rapid and robust relief from symptoms of voltammetry following acute administration of subanesthetic depression in treatment-refractory depressed patients. Previous doses of ketamine (2, 10, and 50 mg/kg, i.p.).
    [Show full text]
  • Sustained Administration of Pramipexole Modifies the Spontaneous Firing of Dopamine, Norepinephrine, and Serotonin Neurons in the Rat Brain
    Neuropsychopharmacology (2009) 34, 651–661 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Sustained Administration of Pramipexole Modifies the Spontaneous Firing of Dopamine, Norepinephrine, and Serotonin Neurons in the Rat Brain ,1 1 1,2 O Chernoloz* , M El Mansari and P Blier 1 2 Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada Pramipexole (PPX) is a D2/D3 receptor agonist that has been shown to be effective in the treatment of depression. Serotonin (5-HT), norepinephrine (NE) and dopamine (DA) systems are known to be involved in the pathophysiology and treatment of depression. Due to reciprocal interactions between these neuronal systems, drugs selectively targeting one system-specific receptor can indirectly modify the firing activity of neurons that contribute to firing patterns in systems that operate via different neurotransmitters. It was thus hypothesized that PPX would alter the firing rate of DA, NE and 5-HT neurons. To test this hypothesis, electrophysiological experiments were carried out in anesthetized rats. Subcutaneously implanted osmotic minipumps delivered PPX at a dose of 1 mg/kg per day for 2 or 14 days. After a 2-day treatment with PPX the spontaneous neuronal firing of DA neurons was decreased by 40%, NE neuronal firing by 33% and the firing rate of 5-HT neurons remained unaltered. After 14 days of PPX treatment, the firing rate of DA had recovered as well as that of NE, whereas the firing rate of 5-HT neurons was increased by 38%.
    [Show full text]
  • DRUG TREATMENTS for Parkinson's
    DRUG TREATMENTS FOR Parkinson’s 1 There is no cure yet for Parkinson’s but there are The content in this booklet is designed to be dipped in and out many different drugs that can of – don’t feel like you need to help manage the symptoms. read everything in one go. This is particularly true because what This booklet is for people works for you when starting with Parkinson’s and their treatment for Parkinson’s may family, friends and carers. change later on. It provides information Reading the bits of this about the drugs most information that you need will commonly used to help also make this booklet more manage the condition. manageable and relevant for you. This booklet starts with some key practical points about the drugs used for treating Parkinson’s, then gives further details about categories of drugs and individual drugs. There is also a summary that gives an overview list of Parkinson’s drugs. Choosing the right medication is always a decision you should make with your specialist or Parkinson’s nurse. You can show this booklet to your specialist or Parkinson’s nurse and ask them questions about the information here. You may also find it a useful starting point when you are talking about the next steps in your treatment. Contents Section 1 This gives an overview of Parkinson’s medication and is recommended for anyone with the condition. Parkinson’s drugs: an introduction .........................................................6 This includes how drugs work, their names and what treatment to take. Other ways to manage your Parkinson’s .............................................9 This includes exercise and therapies.
    [Show full text]
  • Pramipexole Dihydrochloride) Tablets, for Oral Use None (4) Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use ---------------------DOSAGE FORMS AND STRENGTHS---------------------­ MIRAPEX safely and effectively. See full prescribing information for Tablets: 0.125 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1 mg, and 1.5 mg (3) MIRAPEX. -------------------------------CONTRAINDICATIONS-------------------------­ MIRAPEX® (pramipexole dihydrochloride) tablets, for oral use None (4) Initial U.S. Approval: 1997 ---------------------------RECENT MAJOR CHANGES--------------------------­ -----------------------WARNINGS AND PRECAUTIONS-----------------------­ Warnings and Precautions , Postural Deformity (5.6) 5/2018 Falling asleep during activities of daily living: Sudden onset of sleep may Warnings and Precautions, Rhabdomyolysis (5.8) 5/2018 occur without warning; advisepatients to report symptoms (5.1) Warnings and Precautions, Symptomatic orthostatic hypotension: Monitor during doseescalation Events Reported with Dopaminergic Therapy (5.10); (5.2) Melanoma Removed 5/2018 Impulse control/Compulsive behaviors: Patients may experience compulsive behaviors and otherintenseurges (5.3) ----------------------------INDICATIONS AND USAGE--------------------------­ Hallucinations and Psychotic-like Behavior: May occur; risk increases MIRAPEX is a non-ergot dopamine agonist indicated for thetrea tment of: with age (5.4) Parkinson’s disease (PD) (1.1) Dyskinesia: May be caused or exacerbated by MIRAPEX (5.5) Moderate-to-severe primary Restless Legs Syndrome (RLS)
    [Show full text]
  • Drug Information Quarterly
    Whiskey & Taylor Pramipexole in treatment of depression drug information quarterly Psychiatric Bulletin (2004), 28,438^440 EROMONA WHISKEY AND DAVID TAYLOR Pramipexole in unipolar and bipolar depression AIMS AND METHOD RESULTS CLINICAL IMPLICATIONS To review the evidence for this use of There are limited data on the clinical use In view of the fact that the evidence pramipexole in the treatment of of pramipexole in affective disorders. for the use of pramipexole is still unipolar and bipolar depression, a Only two double-blind trials in bipolar limited at the time of writing, its literature search on Embase and depressionandoneinunipolardepression routine clinical use cannot be Medline was conducted in December were retrieved. Most information is in the recommended.The data appear 2003.The search was updated in July form of case reports and open studies. No promising, but further research is 2004.The reference sections of dose-response relationships have been required to determine its role in retrieved papers were searched for established and a wide range of doses has affective disorders. further relevant references. been employed in the reports. The monoamine hypothesis of depression has been the agonists (Maj & Rogoz, 1999; Renard et al,2001).In driving force behind antidepressant drug development for humans, the dopamine agonist bromocriptine has been several decades. The theory holds that lower levels of shown to be as effective as imipramine in the treatment serotonin, noradrenaline and dopamine may be involved of depression (Willner, 1983). For a review of dopamine in in the pathophysiology of depression. The place of sero- depression, see Willner (1995) and Rampello et al (2000).
    [Show full text]
  • A Phase 2A Study to Evaluate the Kappa Opioid Receptor As a Target
    Study Title: A Phase 2a Study to Evaluate the Kappa Opioid Receptor As a Target for the Treatment of Mood and Anxiety Spectrum Disorders by Evaluation of Whether CERC-501 Engages Key Neural Circuitry Related to the Hedonic Response Version Date: October 06, 2016 NCT02218736 FAST-MAS KOR Phase 2a Study Protocol Version 6.0 Task Order #: HHSN27100004 Version Date 10/06/16 Contract #: HHSN271201200006I CLINICAL STUDY PROTOCOL Study Title: A Phase 2a Study to Evaluate the Kappa Opioid Receptor As a Target for the Treatment of Mood and Anxiety Spectrum Disorders by Evaluation of Whether CERC-501 Engages Key Neural Circuitry Related to the Hedonic Response Abbreviated Title: FAST-MAS KOR Phase 2a Protocol Version: 6.0 Version Date: October 06, 2016 Contract Title: New Experimental Medicine Studies: Fast-Fail Trials in Mood and Anxiety Spectrum Disorders (FAST-MAS) Contract #: HHSN271201200006I Contractor: Duke University Contract PI: Andrew D. Krystal, M.D., M.S. Professor, Department of Psychiatry and Behavioral Sciences Duke University Medical Center Box 3309 Durham, NC 27710 Task Order #: HHSN27100004 Overall Study PI: Andrew D. Krystal, M.D., M.S. Supported by: National Institute of Mental Health (NIMH) Confidential: This document and its contents are the property of the Duke Clinical Research Institute. The information contained herein is confidential and is to be used only in connection with matters authorized by Duke Clinical Research Institute. No portion of this document is to be disclosed to others without prior written permission of Duke Clinical Research Institute. Page 1 of 75 FAST-MAS KOR Phase 2a Study Protocol Version 6.0 Task Order #: HHSN27100004 Version Date 10/06/16 Contract #: HHSN271201200006I Abbreviated Study Title: FAST-MAS KOR Phase 2a Contract #: HHSN271201200006I Task Order #: HHSN27100004 Coordinating Center [CC]: Duke Clinical Research Institute (DCRI) Data center [DCC]: Duke Clinical Research Institute (DCRI) Phase of Study: Phase 2a Target enrollment: 90 Patients FDA Approval(s) IND No Yes Drug: CERC-501 IND #: 121225 held by Dr.
    [Show full text]
  • Acute Management of In-Patient Parkinson's Disease Patients
    NHS Fife Acute Management of Patient’s with Parkinson’s Disease Acute management of in-patient Parkinson’s Disease patients Contents Pages Introduction and Admission advice 2 Nil by Mouth Guidance 3 – 5 Complex therapy advice (Apomorphine, DBS, Duodopa) 6 Surgical peri-operative advice 7 Contacts/Directory 7 Author:- Ewan Tevendale, Nicola Chapman, Lynda Kearney Approved by the Managed Services Drug and Therapeutics Committee August 2017. (Review date August 2019) Page 1 NHS Fife Acute Management of Patient’s with Parkinson’s Disease Introduction Medication is crucial in optimal management of Parkinson’s. If medication is not given this can result in compromised swallow (increasing risk of aspiration), delirium, speech difficulties, immobility and hence more dependence. It can also lead to increased falls in a population at high risk of fractures. At worst they may develop a Neuroleptic Malignant Type Syndrome which can be fatal. People with Parkinson’s are admitted to hospital for numerous reasons. Often these are unrelated to their Parkinson’s but if not managed appropriately on admission this can lead to delayed recovery, delayed discharge and poor outcomes for patients and their families. This document has been devised to provide guidance to staff who are involved in the care of someone with Parkinson’s admitted to hospital for whatever reason should the Parkinson’s Specialist Team be unavailable. (e.g. weekend or out of hours) It should be highlighted that these guidelines provide advice to medical and nursing staff to ensure people with Parkinson’s are managed appropriately on admission i.e. receive some anti- parkinsonian medication until they can be seen by a member of the Parkinson’s Team to provide specialist advice on complex medicines management.
    [Show full text]
  • Dopminergic Treatment of Treatment Refractory Mood Disorders
    8/12/2014 Jan Fawcett, M.D. Professor of Psychiatry University of New Mexico School of Medicine Conflicts: More enjoyment than facts … …on Amazon! 1 8/12/2014 ABBREVIATIONS BPD Borderline Personality Disorder DSM-V Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition ECT Electroconvulsive therapy MAOI Monoamine oxidase inhibitors MDD Major depressive disorder NGA New generation antidepressants NNT Number needed to treat OCD Obsessive-Compulsive Disorder PPX Pramipexole SNRI Serotonin–norepinephrine reuptake inhibitors SSRI Selective serotonin reuptake inhibitors SUD Substance use disorder TCA Tricyclic antidepressants TRD Treatment-resistant depression VNS Vagus nerve stimulation Failed Remission and High Relapse Rates Are Common in Mood Disorders MAJOR DEPRESSION: STAR*D OUTCOMES: Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a collaborative study on the treatment of depression, funded by the National Institute of Mental Health Treatment step 1 – citalopram 36.8 % remission Overall Remission Rates steps 1-4 67% Treatment Resistant 33% after four steps of treatment BUT Four Month Recurrence rates step 1-4 40.2%- 71% Recovery rates 67% x 60% = 40.2% “Recovered” at 4 months Recovery: no episode of depression for 6 months; recovery is a more reliable outcome than remission Recurrence: an episode of MDD after six months – assumed to be a “new” episode. 2 8/12/2014 What about Bipolar Depression? Sienaert P., Bipolar Disorder 2013 Response: Best Data Quetiapine- Bipolar Depression 60% response- no follow up recovery data Lithium, lamotrigine, olanzepine, olanzepine + flouxetine combination – less favorable Antidepressants – 25% six week response Zarate et al: Ketamine 79% response same as placebo at 7 days Frye et al: Modafinil remission 44% vs 23%, ES = .47 Goldberg et al (2004): pramipexole (1.7 mg) 67% response vs.
    [Show full text]
  • Behavioral Pharmacology of Dopamine D2 and D3 Receptor Agonists and Antagonists in Rats
    Behavioral Pharmacology of Dopamine D2 and D3 Receptor Agonists and Antagonists in Rats. by Gregory T. Collins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Pharmacology) in The University of Michigan 2008 Doctoral Committee: Professor James H. Woods, Chair Professor Margaret E. Gnegy Professor Shaomeng Wang Assistant Professor Roger K. Sunahara © Gregory T. Collins 2008 DEDICATION This thesis is dedicated to my parents, Thomas and Shirley Collins, without whom none of this would have been possible. Your continual support and encouragement throughout all of my endeavors has meant more than you will ever know. Thank you. ii ACKNOWLEDGMENTS First and foremost, I would like to thank my mentor, James Woods. You have been an exceptional mentor to me; I have learned more than I could have ever hoped. It has been a pleasure to work with someone who is so passionate and knowledgable, someone who has not only continued to challenge me, but has also provided an outstanding environment in which to study behavioral pharmacolgy. I truly feel lucky to have been able to learn from you. Of course, I also have to thank Gail Winger who has been a second mentor to me throughout the years. The support, encouragement, guidance, and patience that the two of you have provided has made for an exceptional experience. Thank you. I would also like to thank my committee, James Woods, Roger Sunahara, Peggy Gnegy and Shaomeng Wang. I am grateful to have been able to work with and learn from all of you over the years.
    [Show full text]