Geology and Evolution of the Blue Ridge Escarpment Along the Toxaway River in Northwestern South Carolina and Adjacent North Carolina Egan G

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Evolution of the Blue Ridge Escarpment Along the Toxaway River in Northwestern South Carolina and Adjacent North Carolina Egan G Geology and Evolution of the Blue Ridge Escarpment Along the Toxaway River In Northwestern South Carolina and Adjacent North Carolina Egan G. Jarvis and William A. Ranson Department of Earth and Environmental Science Furman University, Greenville, SC 29613 Introduction Structure Petrology As part of the research we walked the length of the Geomorphology Discussion The effects of river systems on the development of Toxaway River. We collected lithological and structural data Five rock specimens were collected along the Toxaway River. The main lithology is geologic structures has intrigued scientists for including foliation (Figure 2 ) and joints (Figure 3) . This data the Toxaway Gneiss with primary mineralogy of biotite (5-10%), muscovite (10- centuries. The Blue Ridge Escarpment (BRE), which dates Regarding the origin of the Blue Ridge escarpment, one major was then plotted as poles to foliation (Figure 4) and rose 15%), quartz (20-30%), microcline (20-25%), and plagioclase (20-25%) (Figure 6a to the Mesozoic, has recorded a long history of evolution hypothesis proposes that the BRE was initially formed during diagram for joint measurements (Figure 5). and b). which many believe to be the result of fluvial processes the Mesozoic era as a rift-flank uplift (Spotila et al., 2004). Where the Toxaway River transects the Brevard Zone, the major rock type is (Spotilla et al, 2004). This study focused on erosional and Knickpoint formation may be the result of rejuvenation of muscovite schist and phyllite with a mineralogy consisting of plagioclase (15%), fluvial processes that play an influential role in the Appalachian topography associated with Late Cenozoic mantle quartz (40%), muscovite (40%) with 5% accessory biotite, chlorite, and epidote evolution of the BRE, including cavitation, abrasion and dynamics (Hill and Stewart, 2018). The main erosive Tox 4 (Figure 6b, Figure 7a and 7c). plucking. mechanisms by which the Toxaway River erodes the Blue Ridge Escarpment is through plucking and abrasion. Plucking TOX 7 Tox 9 occurs along orthogonal joints in hard Toxaway gneiss whereas abrasion occurs primarily in areas with softer rocks such as phyllonites and schists associated with the Brevard fault zone. Geologic Setting This study corroborates previous studies of other rivers a flowing into Lake Jocassee, including the Whitewater, Thompson, and Horsepasture River, although all rivers have The Blue Ridge Escarpment (BRE) is a 500 km-long geologic GIS foliation map for Figure 2. Figure 3. GIS joint map for the Figure 8a and b. a) Large knickpoint along the Toxaway Creek “ oh hell no” unique characteristics. landform that lies alongside the Eastern Continental Divide. the Toxaway River Toxaway River falls is developed through fluvial processes. (approximately 120 ft vertical For the last 180 million years the BRE has acted as an drop) b) Cascade style Wintergreen falls. Each demonstrates a different type asymmetrical drainage divide between the eastern flowing of knickpoint. streams that empty into the Atlantic and western streams that flow into the Gulf of Mexico (Prince et al. 2010). Because of b this asymmetrical divide, the BRE has been a structure that has References been defined by erosional retreat. Even though the BRE is Fig 6a and b. a) Well jointed outcrop of stiped Toxaway Gneiss. b) Rock very old, it still maintains a high level of relief, from the is more schist like and softer which allows for the development of Spotila, J.A., Buscher, J.T., Meigs, A.J. , Reiners, P.W., Blue Ridge uplands to the Piedmont (Miller et al. repeated potholes. An outcrop of muscovite schist and phyllite showing 2004, Long-term glacial erosion of active mountain belts: Example of the Chugach–St. Elias Range, Alaska, Geology, v.32 ,no.6, p.501–504. 2013). The BRE in northwestern South Carolina and adjacent the development of abundant potholes . Prince, P.S., Spotila, J.A., Henika, W.S., 2010, New North Carolina lies within the Inner Piedmont of the Tugaloo physical evidence of the role of stream capture in active retreat of the Blue Ridge Terrane and just east of the Brevard Zone and the Eastern escarpment, southern Appalachians: Geomorphology, 123, p. 305-319 Miller, S.R., Sak, P.B., Kirby, E., Bierman, P.R., 2013, Blue Ridge. Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates: Earth and Planetary Science letters, 369-370, p.1-12. Hatcher, R.D., Tollo, R.P., Bartholomew, M.J., Hibbard ,J.P., Karabinos, P.M., 2010, The Appalachian Orogen; a brief summary (in From Rodinia to Pangea; the lithotctonic record of the Appalachian region), Figure 4a and 4b. a) A stereonet of poles to foliation with the majority Geological Society of America, 206: 1-19 . striking to the NE and dipping to the SE. b) A Rose diagram showing the Hill, J.S, and Stewart, K.G, 2018, The Boone fault and its Figure 9) Potholes formed in muscovite schist and implications for Cenozoic topographic rejuvenation of the southern Appalachian distribution of joint orientations along the Toxaway River. Mountains: Carolina Geological society, v.79, p. 95-107 phyllite due to abrasion along the Toxaway River, ranging in size from 15 cm to 1 m. Figure 5:. The repetition of a b a) Digital elevation orthogonal joints along the Figure 10a and b. a model of the Toxaway River. The Acknowledgments Toxaway River, particularly at watershed for the Toxaway River as knickpoint faces, increases the delineate in the DEM is 46.73 square likelihood of mechanical processes I would like to thank Dr. Ranson. His boundless leadership miles (380.0 km2) with a length of 21.31 like plucking. and encouragement, allowed me to do something that in the mi (34.30 km). b Longitudinal profile of Figure 1. Location map of Lake Jocassee. ) start I thought I would procrastinate more on. Thank you to the Toxaway River showing knickpoints. The Southern Appalachian's have undergone several orogenic c Furman University and the Furman Advantage for events: The first orogenic event was the Ordovician Taconic providing the funding for this research. orogeny, which involved arc accretion; the second was the Figure 7a, b and c. Photomicrographs of thin sections of rock samples taken Acadian–Neoacadian orogeny, which involved the accretion of in cross-polarized light. a) Tox 7, phyllite schist with biotite, muscovite, the Carolina superterrane (Hatcher et al. 2010); the quartz, microcline, and plagioclase with dextral sheer. b) Tox 8, Toxaway Alleghenian orogeny, during which Gondwana collided with Gneiss with quartz, plagioclase porphyroblasts , biotite, muscovite. c) Tox 3, Laurentia to form Pangea. The primary bedrock associated phyllite schist with microcline, quartz , plagioclase, muscovite and biotite b with the Toxaway River is Toxaway Gneiss, Chauga River schist, and the Tallulah Falls formation ..
Recommended publications
  • Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama
    Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama By JOHN T. HACK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Theories of landscape origin are compared using as an example an area of gently dipping rocks that differ in their resistance to erosion UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract___________________________________________ C1 Cumberland Plateau and Highland Rim as a system in Introduction_______________________________________ 1 equilibrium______________________________________ C7 General description of area___________________________ 1 Valleys and coves of the Cumberland Escarpment___ 7 Cumberland Plateau and Highland Rim as dissected and Surficial deposits of the Highland Rim____________ 10 deformed peneplains _____________________ ,... _ _ _ _ _ _ _ _ 4 Elk River profile_______________________________ 12 Objections to the peneplain theory____________________ 5 Paint Rock Creek profile________________________ 14 Eastern Highland Rim Plateau as a modern peneplain__ 6 Conclusions________________________________________ 14 Equilibrium concept
    [Show full text]
  • When the Mountain Became the Escarpment.FH11
    Looking back... with Alun Hughes WHEN THE MOUNTAIN BECAME THE ESCARPMENT The Niagara Escarpment hasnt always been But Coronelli was not the first to put Niagara known by that name. Early in the 19th century it on the map. That distinction belongs to Father Louis was often referred to as the Mountain, and of course Hennepin, the Recollect priest who was the first it is still called that in Hamilton and Grimsby today. European to describe Niagara Falls from personal We in eastern Niagara have largely forgotten the observation. In his Description de la Louisiane, name, though it survives in the City of Thorolds published in 1683, five years after his visit, he speaks motto Where the Ships Climb the Mountain. of le grand Sault de Niagara, and labels it thus on the accompanying map. This is the form that So when did the name Niagara Escarpment first prevails thereafter, and it is the spelling used for Fort come into use? And what about the areas other de Niagara, established by the French at the mouth Niagara names, like Niagara Falls, Niagara River of the river in 1726. The English followed suit, and Niagara Peninsula? When did these first appear? though on many early maps (e.g. Moll 1715, I dont pretend to have definitive answers there Mitchell 1782) they use the name Great Fall of are too many sources I have not seen but I can Niagara rather than Niagara Falls. suggest some preliminary conclusions. In his Description Hennepin also refers to la The name Niagara is definitely of native origin, belle Riviere de Niagara, so the name Niagara though there is no agreement about its meaning.
    [Show full text]
  • The Abyssal Giant Pockmarks of the Black Bahama Escarpment: Relations Between Structures, fluids and Carbonate Physiography” by Thibault Cavailhes Et Al
    Solid Earth Discuss., https://doi.org/10.5194/se-2020-11-RC2, 2020 SED © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Interactive comment Interactive comment on “The abyssal giant pockmarks of the Black Bahama Escarpment: Relations between structures, fluids and carbonate physiography” by Thibault Cavailhes et al. Charles Paull (Referee) [email protected] Received and published: 10 April 2020 The manuscript describes a series of ∼circular depressions at the base of the Bahama Escarpment. These are curious features and their discovery may ultimately merit pub- lication. However, the manuscript more closely resembles a first draft, rather than a Printer-friendly version polished work. As is, the existing draft is too poorly written to fully follow many of the arguments in detail. Part of may be attributed to the challenge of writing in a second Discussion paper language. I have made some suggestions as to how to begin to sharpen the word- ing, but it is an incomplete effort. There are also a number of science related points C1 (also indicate below) that need to be considered before this could be recommended for publication. SED Why are these depressions called pockmarks from the outset? What is actually ob- served are approximately circular depressions. The term ‘pockmark’ has evolved to Interactive imply that the depression was somehow physically excavated by seepage, not phys- comment ical collapse. Moreover, it is not commonly been used in carbonate settings. The manuscript also refers to other similar depressions that have been previously been called plunge pools. This is yet another mechanism for surface erosion.
    [Show full text]
  • 1 a Film by Roger J. Kuhns What Was It Like in Door County Wisconsin 425 Million Years Ago? What
    a film by Roger J. Kuhns www.rogerjameskuhns.com What was it like in Door County Wisconsin 425 million years ago? What has gone on in the geologic and biologic past beneath our feet? What are the changes we’re experiencing now? What might the future hold for our land, water, environment and communities? “Escarpment” is the natural history story of Eastern Wisconsin and the Niagara Escarpment region of the Great Lakes. The film was shot on location along the entire length of the Niagara Escarpment, with a Door County focus. It is a fast-paced fun voyage through billions of years of Eastern Wisconsin geologic and biologic past. The film reconstructs ecosystems that existed when the dolomitic rocks of the Niagara Escarpment were formed, considers if dinosaurs ever walked in what is now Door County, follows the path of glaciers, and many other major events in our rich geologic past. Locations around the world are featured to show what Eastern Wisconsin was like in the past. Animated sequences are used to illustrate parts of the story. The film helps to inform, enlighten, and guide us towards being better stewards of the land, and takes a glimpse of what a sustainable future might look like. In the spirit of Discovery Channel and National Geographic films, geologist and sustainologist Roger Kuhns produced this film for all ages. Kuhns has worked on the Niagara Escarpment and Great Lakes geology and ecology during the course of his career. FILM: Escarpment GENRE: Science / Nature / Travel PRODUCED BY: Roger J. Kuhns RUN TIME: 1 hour 33 minutes PRODUCTION: musicTOears Press CONTACT INFO: [email protected] / 860-910-8525 AVAILABLE AT: www.rogerjameskuhns.com MOVIE TRAILER: https://www.youtube.com/watch?v=YAyRp7VYFWs 1 2017-2018 Reviews from viewers of a film by Roger J.
    [Show full text]
  • Historic Overview
    Updated Reconnaissance Level Survey of Historic Resources Town of Amherst HISTORIC OVERVIEW LOCATION The Town of Amherst lies in northern Erie County, New York. It is bordered by Niagara County to the north, the Erie County towns of Clarence to the east, Cheektowaga to the south, and Tonawanda to the west. The total area of Amherst is approximately 53 square miles. ENVIRONMENTAL SETTING The natural environmental setting influenced prehistoric and historic settlement patterns in the Town of Amherst. The town lies within the Erie‐Ontario Lake Plain physiographic province, described as a nearly level lowland plain with few prominent topographic features. The area is underlain by Onondaga limestone dating to the Late Devonian period. Later glaciations shaped much of the western New York topography, including that of Amherst. One of the most prominent topographic features in the relatively featureless province is the Onondaga Escarpment, an east‐west trending hard limestone bedrock formation that lies in the southern portion of the Town of Amherst. The Onondaga Escarpment proved resistant to the effects of glacial scouring and it forms the southern boundary of a large basin once occupied by the shallow glacial Lake Tonawanda. Lake Tonawanda eventually receded leaving behind wetlands and deposits of clay and sand throughout much of northern Amherst (Owens et al. 1986:2). The most important drainages in the Town of Amherst are Tonawanda Creek, Ransom Creek, and Ellicott Creek. Tonawanda Creek forms the northern boundary between Amherst and Niagara County. It flows in a western direction and drains much of the eastern and Northern portions of Amherst.
    [Show full text]
  • 65Th Annual Tri-State Geological Field Conference 2-3 October 2004
    65th Annual Tri-State Geological Field Conference 2-3 October 2004 Weis Earth Science Museum Menasha, Wisconsin The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago Joanne Kluessendorf & Donald G. Mikulic Organizers The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago 65th Annual Tri-State Geological Field Conference 2-3 October 2004 by Joanne Kluessendorf Weis Earth Science Museum, Menasha and Donald G. Mikulic Illinois State Geological Survey, Champaign With contributions by Bruce Brown, Wisconsin Geological & Natural History Survey, Stop 1 Tom Hooyer, Wisconsin Geological & Natural History Survey, Stops 2 & 5 William Mode, University of Wisconsin-Oshkosh, Stops 2 & 5 Maureen Muldoon, University of Wisconsin-Oshkosh, Stop 1 Weis Earth Science Museum University of Wisconsin-Fox Valley Menasha, Wisconsin WELCOME TO THE TH 65 ANNUAL TRI-STATE GEOLOGICAL FIELD CONFERENCE. The Tri-State Geological Field Conference was founded in 1933 as an informal geological field trip for professionals and students in Iowa, Illinois and Wisconsin. The first Tri-State examined the LaSalle Anticline in Illinois. Fifty-two geologists from the University of Chicago, University of Iowa, University of Illinois, Northwestern University, University of Wisconsin, Northern Illinois State Teachers College, Western Illinois Teachers College, and the Illinois State Geological Survey attended that trip (Anderson, 1980). The 1934 field conference was hosted by the University of Wisconsin and the 1935 by the University of Iowa, establishing the rotation between the three states. The 1947 Tri-State visited quarries at Hamilton Mound and High Cliff, two of the stops on this year’s field trip.
    [Show full text]
  • Late Cretaceous Stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/9 Late Cretaceous stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H. G. Page and C. A. Repenning, 1958, pp. 115-122 in: Black Mesa Basin (Northeastern Arizona), Anderson, R. Y.; Harshbarger, J. W.; [eds.], New Mexico Geological Society 9th Annual Fall Field Conference Guidebook, 205 p. This is one of many related papers that were included in the 1958 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Flooding Along the Balcones Escarpment in Central Texas
    FLOODING ALONG THE BALCONES ESCARPMENT, CENTRAL TEXAS S. Christopher Caran Victor R. Baker Bureau of Economic Geology Department of Geosciences The University of Texas at Austin University of Arizona Austin. TX 78713 Tucson. AZ 85721 A few days before the rains began to fall. a band of Tonkawa Indians that were camped in the river valley just below old Fort Griffin moved their camp to the top of one of the nearby hills. After the flood, on being asked why they moved to the top of the hill. the chief answered that when the snakes crawl towards the hills, the prairie do1s run towards the hills. and the grasshoppers hop towards the hills. it is time for the Indian to go to the hills. (Oral testimony attributed to an unnamed weather observer in Albany. Texas, following a memorable flood on the Clear Fork of the Brazos River in the late 1870's: recounted by Vance. 1934. p. 7.) ABSTRACT subbasins in Central Texas. Intense rainstorms over small watersheds throughoot the region have produced numerous High-magnitude floods occur with greater frequency in examples of discharge in excess of 100.000 cfs. Flooding the Balcones Escarpment area than in any other region of of this magnitude exacts a heavy toll from area residents the United States. Rates of precipitation and discharge per who incur the high cost of flood-control structures on trunk unit drainage area approach world maxima. The intensity streams (fig. 1). but also sustain casualties and damages of rainstorms is compounded by rapid runoff and limited associated with floods on small.
    [Show full text]
  • Bedrock Geologic Map of New Jersey
    O O O 74 00’ BEDROCK GEOLOGIC MAP 75 00’ 74 30’ OF NEW JERSEY DESCRIPTION OF MAP UNITS SUSSEX Sedimentary Rocks Franklin CENOZOIC PASSAIC Mahwah Holocene: beach and Newton 41O 00’ estuarine deposits Andover Paleogene and Neogene: sand, silt, clay Delaware Water Gap Boonton BERGEN MESOZOIC WARREN Paterson Cretaceous: sand, silt, clay Hackensack Jurassic: siltstone, shale, Belvidere MORRIS sandstone, conglomerate ESSEX Morristown Triassic: siltstone, shale, HUDSON Newark sandstone, conglomerate Jersey City Gladstone Phillipsburg PALEOZOIC UNION Devonian: conglomerate, sandstone, Elizabeth shale, limestone Somerville Carteret Silurian: conglomerate, sandstone, Milford shale, limestone HUNTERDON New Brunswick 40O 30’ Ordovician: shale, limestone Flemington SOMERSET Cambrian: limestone, sandstone MIDDLESEX Igneous and Metamorphic Rocks MESOZOIC Jurassic and Triassic: basalt MERCER Jurassic: diabase Freehold MONMOUTH PALEOZOIC N Trenton Asbury Park Ordovician and Cambrian: schist, gneiss MESOPROTEROZOIC marble gneiss, granite O Mount Holly 40 00’ DESCRIPTION OF MAP SYMBOLS Toms River limit of late Wisconsinan glaciation Camden OCEAN limit of Illinoian glaciation BURLINGTON limit of pre-Illinoian glaciation Woodbury CAMDEN GLOUCESTER SALEM Salem O O 39 30’ ATLANTIC 39 30’ Bridgeton Mays Landing ICAL A OG ND L EO W CUMBERLAND G A T Y E E R Atlantic City S S R U E J R V E W E Y N 1835 0 5 10 15 20 mi Department of Environmental Protection CAPE MAY NEW JERSEY GEOLOGICAL AND WATER SURVEY 0 10 20 30 km Cape May 2017 Court House scale 1:1,000,000 39O 00’ O O O O O 76 00’ 75 30’ 75 00’ 74 30’ 74 00’ BEDROCK GEOLOGY OF NEW JERSEY For an area of its size, New Jersey has a uniquely diverse and interesting basalt and diabase are more resistant to erosion than the enclosing sandstone geology.
    [Show full text]
  • Geology of Michigan and the Great Lakes
    35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed.
    [Show full text]
  • Rift Geological Structure and Drainage Integration Drive Escarpment Evolution at Rifted Continental Margins
    EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 35, 1373–1385 (2010) Copyright © 2010 John Wiley & Sons, Ltd. Published online 5 May 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.1973 Butte detachment: how pre-rift geological structure and drainage integration drive escarpment evolution at rifted continental margins Y. Gunnell1* and D.J. Harbor2 1 Department of Geography, Université Paris Diderot, CNRS UMR 8591, 45 rue Thomas Mann, 75205 Paris cedex 13, France 2 Department of Geology, Washington & Lee University, Lexington, VA 24450, USA Received 25 January 2007; Revised 23 May 2008; Accepted 29 May 2008 *Correspondence to: Y. Gunnell, Department of Geography, Université Paris Diderot, CNRS UMR 8591, 45 rue Thomas Mann, 75205 Paris cedex 13, France ABSTRACT: The erosional pattern of passive margins often follows the fabric of ancient, compressional geological structures exposed by the topographic energy of rifting. As erosion cuts into these belted outcrop systems they impose initial and boundary conditions that steer drainage recession into the plateau edge and control escarpment-forming conditions. Pattern therefore controls process. Although generic surface process models predict scarp patterns and retreat in settings devoid of geological heterogeneity, they tend to do so only at isolated locations and for periods shorter than the lifespan of the escarpments. Thus, to focus on rela- tively narrow strike-perpendicular swaths of passive margin topography misses important aspects of drainage integration, which involves mobile drainage basin boundaries shifting across but also along the strike of inherited geological structures and through continental-scale bioclimatic zones. Space-for-time substitution along three passive margin escarpments (Blue Ridge, Western Ghats, Eastern Ghats) reveals the signifi cance of escarpment jumps and the detachment of topographic outliers, here generically termed ‘buttes’, as key processes of escarpment evolution.
    [Show full text]
  • Niagara Escarpment, a Natural Wonder in Wisconsin
    Niagara Escarpment, A Natural Wonder in Wisconsin Sheboygan Press 7-2-3016 Eastern Wisconsin is graced with a number of rare geographic features that create a dream landscape for outdoor enthusiasts. We have the Kettle Moraine which runs the length of western Sheboygan County. We have Lake Michigan, a veritable inland sea, which forms the eastern boundary of the county. And we have the Niagara Escarpment. Though lesser known, it is equally impressive in the things it offers in the areas of science, history and education. The escarpment is actually a cuesta which is defined as a ridge with a gentle slope on one side and a steep slope on the other. It extends about 250 miles through the area beginning with a few isolated outcrops in Waukesha County on the south. The ridge then disappears under glacial sediment until it re-emerges in Dodge County. Well exposed in Fond du Lac County, and locally known as the Ledge, it is best seen in the area of St. Mary’s Hill on Highway 23 just east of the city of Fond du Lac. In Calumet County, it is most visible at the northeastern end of Lake Winnebago near Sherwood. From there it continues into Brown County and winds northeast along Green Bay and up the west side of the Door County peninsula. Disappearing under the Great Lakes, it remerges in Ontario, and continues on into New York State where it forms the steep drop that is Niagara Falls. Contrary to popular belief, the Niagara Escarpment is not a fault line or the result of glaciation.
    [Show full text]