Testing the Origins of the Blue Ridge Escarpment
Total Page:16
File Type:pdf, Size:1020Kb
Testing the Origins of the Blue Ridge Escarpment Gregory C. Bank Master’s Thesis - Defended July 27, 2001 Dept. of Geological Sciences, Virginia Tech advisor: Dr. James Spotila Committee members: Dr. David Harbor, Bill Henika, Dr. W. Lee Daniels TESTING THE ORIGINS OF THE BLUE RIDGE ESCARPMENT Gregory C. Bank Abstract Long, linear, high-relief escarpments mark many of the world’s passive margins. These Great Escarpments have been interpreted to be the result of isostatic flexure, parallel slope retreat, and divide migration which accompanies rifting. It is unclear whether all these escarpments share this origin. Also uncertain is whether these features are formed via stable, steady-state processes or by climatic shifts or tectonic rejuvenation. The Blue Ridge Escarpment, eastern North America’s great escarpment, is no different. A number of hypotheses attempt to explain the Blue Ridge Escarpment. These include lithologic variation between Blue Ridge and Piedmont rocks, the distance to ultimate base level, as well as, escarpment retreat resulting from post/syn-rift warping or faulting. We approach this problem from two directions. The first involves topographic comparisons and geologic observations to recognize and track divide migration. The second approach uses U-Th/He thermochronometry along two scarp-normal transects. Topographic analysis used data extracted from DEMs to compare three zones – the Upland, the Piedmont and the scarp zone itself. Parameters such as relief, drainage density, hypsometry, and slope are often used as proxies for relative erosion rates and the degree of maturity of a landscape. Results from these analyses indicate that the Upland and Piedmont zones are distinct landscapes, sharing very few topographic similarities, yet neither appears significantly more erodible than the other. Examination of parameters in the proximity of the escarpment point toward more rapid erosion here. Field evidence of this rapid scarp erosion (and thus divide migration) lies in the presence of beheaded stream channels, cobble roundness, and clast provenance. U-Th/He thermochronometry is a low temperature technique that allows us to calculate when rock cooled below 60-70C. Temperature is used as a proxy for depth, from which we can extract an exhumation rate. This method allows us to further test scarp genesis hypotheses. Preliminary results show older ages (~160) from the Upland ii surface than on the Piedmont lowland (~100 Ma). This confirms that the Piedmont surface is distinct from the Upland and demonstrates that it has experienced greater erosion. There is also some indication that ages “jump” across the Bowens Creek/Brevard fault system. Lastly, the ages appear to become younger approaching the escarpment which is indicative of scarp migration. As these results are preliminary, more data is required to prove or disprove these conclusions. iii Acknowledgements I wish to thank Dr. James Spotila for advising me through this project. I wish to thank Bill Henika of the Virginia Division of Mineral Resources and Virginia Tech for his vast and invaluable knowledge of the study region and for his willingness to help with sampling field trips. In addition, I would like to express my appreciation to Dr. Peter Reiners for dating many of my samples. Thanks also go to Dr. David Harbor of Washington & Lee University and to Dr. W. Lee Daniels of Virginia Tech. Funding This project was funded by a Byron Cooper Geoscience Endowed Fellowship Grant and by a Geological Society of America Student Research Grant. iv Table of Contents Chapter 1: Introduction 1.1 Background ...................................................................................................... 1 1.2 Previous Studies ............................................................................................... 1 1.3 Other Great Escarpments worldwide ............................................................... 3 1.4 Landscape Models............................................................................................ 5 1.5 Testing Hypotheses for the Origins of the Blue Ridge Escarpment ................ 6 Chapter 1: Figures & Tables Figure & Table Captions....................................................................................... 11 Figures 1-8........................................................................................................13-20 Table 1................................................................................................................... 21 Chapter 2: Topographic Analysis 2.1 Introduction .................................................................................................... 22 2.2 Methods.......................................................................................................... 22 2.3 Initial Characterization................................................................................... 23 2.4 Detailed Analyses........................................................................................... 26 2.4.1 Topographic comparison of Upland and Piedmont surfaces .................... 26 2.4.1a Topographic subset comparison ........................................................... 27 2.4.1b Drainage Basin Comparisons ............................................................... 28 2.4.2 Topographic characterization of the escarpment zone.............................. 30 2.5 Discussion ...................................................................................................... 31 2.5.1 Topographic subsets.................................................................................. 32 2.5.2 Basins ........................................................................................................ 34 2.5.3 Topographic Transects .............................................................................. 40 2.6 Summary ........................................................................................................ 42 Chapter 2: Figures & Tables Figure List ............................................................................................................. 45 v Figures 9-22......................................................................................................47-61 Tables 2-3.........................................................................................................62-63 Chapter 3: Evidence for Escarpment Migration Based on the Fluvial Geomorphology of Upland Basins 3.1 Introduction .................................................................................................... 64 3.2 Fluvial Terraces atop the Divide .................................................................... 64 3.2.1 Terrace Locations...................................................................................... 64 3.2.2 Clast Provenance....................................................................................... 66 3.2.3 Clast Roundness ........................................................................................ 68 3.2.4 Implications............................................................................................... 69 3.3 Capture of Upland Streams ............................................................................ 69 3.3.1 Introduction ............................................................................................... 69 3.3.2 Evidence of Capture: Morphology of Upland Basins ............................... 69 3.3.3 Meander-Drainage Area Relationship of Upland Streams........................ 71 3.3.4 Summary ................................................................................................... 73 3.4 Implications.................................................................................................... 73 Chapter 3: Figures & Tables Figure List ............................................................................................................. 75 Figures 23-28....................................................................................................77-82 Table 4................................................................................................................... 83 Chapter 4: Constraints on exhumation using (U-Th)/He thermochronometry 4.1 Introduction .................................................................................................... 84 4.2 Methods.......................................................................................................... 86 4.3 Results ............................................................................................................ 87 4.4 Interpretations................................................................................................. 88 Chapter 4: Figures & Tables Figure List ............................................................................................................. 91 vi Figures 29-35....................................................................................................93-99 Tables 5-7.....................................................................................................100-102 Chapter 5: Conclusions 5.1 Elimination of Hypotheses........................................................................... 103 5.2 Viability of remaining Hypotheses .............................................................. 104 5.3 Future directions........................................................................................... 105 References .........................................................................................................