Mathmod Conference Publications– Final Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transformations in Sirigu Wall Painting and Fractal Art
TRANSFORMATIONS IN SIRIGU WALL PAINTING AND FRACTAL ART SIMULATIONS By Michael Nyarkoh, BFA, MFA (Painting) A Thesis Submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Faculty of Fine Art, College of Art and Social Sciences © September 2009, Department of Painting and Sculpture DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text. Michael Nyarkoh (PG9130006) .................................... .......................... (Student’s Name and ID Number) Signature Date Certified by: Dr. Prof. Richmond Teye Ackam ................................. .......................... (Supervisor’s Name) Signature Date Certified by: K. B. Kissiedu .............................. ........................ (Head of Department) Signature Date CHAPTER ONE INTRODUCTION Background to the study Traditional wall painting is an old art practiced in many different parts of the world. This art form has existed since pre-historic times according to (Skira, 1950) and (Kissick, 1993). In Africa, cave paintings exist in many countries such as “Egypt, Algeria, Libya, Zimbabwe and South Africa”, (Wilcox, 1984). Traditional wall painting mostly by women can be found in many parts of Africa including Ghana, Southern Africa and Nigeria. These paintings are done mostly to enhance the appearance of the buildings and also serve other purposes as well. “Wall painting has been practiced in Northern Ghana for centuries after the collapse of the Songhai Empire,” (Ross and Cole, 1977). -
Gyã¶Rgy Kepes Papers
http://oac.cdlib.org/findaid/ark:/13030/c80r9v19 No online items Guide to the György Kepes papers M1796 Collection processed by John R. Blakinger, finding aid by Franz Kunst Department of Special Collections and University Archives 2016 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the György Kepes M1796 1 papers M1796 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: György Kepes papers creator: Kepes, Gyorgy Identifier/Call Number: M1796 Physical Description: 113 Linear Feet (108 boxes, 68 flat boxes, 8 cartons, 4 card boxes, 3 half-boxes, 2 map-folders, 1 tube) Date (inclusive): 1918-2010 Date (bulk): 1960-1990 Abstract: The personal papers of artist, designer, and visual theorist György Kepes. Language of Material: While most of the collection is in English, there is also a significant amount of Hungarian text, as well as printed material in German, Italian, Japanese, and other languages. Special Collections and University Archives materials are stored offsite and must be paged 36 hours in advance. Biographical / Historical Artist, designer, and visual theorist György Kepes was born in 1906 in Selyp, Hungary. Originally associated with Germany’s Bauhaus as a colleague of László Moholy-Nagy, he emigrated to the United States in 1937 to teach Light and Color at Moholy's New Bauhaus (soon to be called the Institute of Design) in Chicago. In 1944, he produced Language of Vision, a landmark book about design theory, followed by the publication of six Kepes-edited anthologies in a series called Vision + Value as well as several other books. -
Art Gallery: Global Eyes Global Gallery: Art 152 ART GALLERY ELECTRONIC ART & ANIMATION CATALOG Adamczyk Walt J
Art Gallery: Global Eyes Chair Vibeke Sorensen University at Buffalo Associate Chair Lina Yamaguchi Stanford University ELECTRONIC ART & ANIMATION CATALOG ELECTRONIC ART & ANIMATION ART GALLERY ART 151 Table of Contents 154 Art Gallery Jury & Committee 176 Joreg 199 Adrian Goya 222 Masato Takahashi 245 Andrea Polli, Joe Gilmore 270 Peter Hardie 298 Marte Newcombe 326 Mike Wong imago FACES bogs: Instrumental Aliens N. falling water Eleven Fifty Nine Elevation #2 156 Introduction to the Global Eyes Exhibition Landfill 178 Takashi Kawashima 200 Ingo Günther 223 Tamiko Thiel 246 Joseph Rabie 272 Shunsaku Hayashi 327 Michael Wright Running on Empty Takashi’s Seasons Worldprocessor.com The Travels of Mariko Horo Psychogeographical Studies Perry’s Cowboy • Animation Robotman Topography Drive (Pacific Rim) Do-Bu-Ro-Ku 179 Hyung Min Lee 224 Daria Tsoupikova 158 Vladimir Bellini 247 r e a Drought 328 Guan Hong Yeoh Bibigi (Theremin Based on Computer-Vision Rutopia 2 La grua y la jirafa (The crane and the giraffe) 203 Qinglian Guo maang (message stick) 274 Taraneh Hemami Here, There Super*Nature Technology) A digital window for watching snow scenes Most Wanted 225 Ruth G. West 159 Shunsaku Hayashi 248 Johanna Reich 300 Till Nowak 329 Solvita Zarina 180 Steve Mann ATLAS in silico Ireva 204 Yoichiro Kawaguchi De Vez En Cuando 276 Guy Hoffman Salad See - Buy - Fly CyborGLOGGER Performance of Hydrodynamics Ocean Time Bracketing Study: Stata Latin 226 Ming-Yang Yu, Po-Kuang Chen 250 Seigow Matsuoka Editorial 301 Jin Wan Park, June Seok Seo 330 Andrzej -
Glossaire Infographique
Glossaire Infographique André PASCUAL [email protected] Glossaire Infographique Table des Matières GLOSSAIRE ILLUSTRÉ...............................................................................................................................................................1 des Termes techniques & autres,.....................................................................................................................................1 Prologue.......................................................................................................................................................................................2 Notice Légale...............................................................................................................................................................................3 Définitions des termes & Illustrations.......................................................................................................................................4 −AaA−...........................................................................................................................................................................................5 Aberration chromatique :..................................................................................................................................................5 Accrochage − Snap :........................................................................................................................................................5 Aérosol, -
Biological Agency in Art
1 Vol 16 Issue 2 – 3 Biological Agency in Art Allison N. Kudla Artist, PhD Student Center for Digital Arts and Experimental Media: DXARTS, University of Washington 207 Raitt Hall Seattle, WA 98195 USA allisonx[at]u[dot]washington[dot]edu Keywords Agency, Semiotics, Biology, Technology, Emulation, Behavioral, Emergent, Earth Art, Systems Art, Bio-Tech Art Abstract This paper will discuss how the pictorial dilemma guided traditional art towards formalism and again guides new media art away from the screen and towards the generation of physical, phenomenologically based and often bio-technological artistic systems. This takes art into experiential territories, as it is no longer an illusory representation of an idea but an actual instantiation of its beauty and significance. Thus the process of making art is reinstated as a marker to physically manifest and accentuate an experience that takes the perceivers to their own edges so as to see themselves as open systems within a vast and interweaving non-linear network. Introduction “The artist is a positive force in perceiving how technology can be translated to new environments to serve needs and provide variety and enrichment of life.” Billy Klüver, Pavilion ([13] p x). “Art is not a mirror held up to reality, but a hammer with which to shape it.” Bertolt Brecht [2] When looking at the history of art through the lens of a new media artist engaged in several disciplines that interlace fields as varying as biology, algorithmic programming and signal processing, a fairly recent paradigm for art emerges that takes artistic practice away from depiction and towards a more systems based and biologically driven approach. -
Linking Math with Art Through the Elements of Design
2007 Asilomar Mathematics Conference Linking Math With Art Through The Elements of Design Presented by Renée Goularte Thermalito Union School District • Oroville, California www.share2learn.com [email protected] The Elements of Design ~ An Overview The elements of design are the components which make up any visual design or work or art. They can be isolated and defined, but all works of visual art will contain most, if not all, the elements. Point: A point is essentially a dot. By definition, it has no height or width, but in art a point is a small, dot-like pencil mark or short brush stroke. Line: A line can be made by a series of points, a pencil or brush stroke, or can be implied by the edge of an object. Shape and Form: Shapes are defined by lines or edges. They can be geometric or organic, predictably regular or free-form. Form is an illusion of three- dimensionality given to a flat shape. Texture: Texture can be tactile or visual. Tactile texture is something you can feel; visual texture relies on the eyes to help the viewer imagine how something might feel. Texture is closely related to Pattern. Pattern: Patterns rely on repetition or organization of shapes, colors, or other qualities. The illusion of movement in a composition depends on placement of subject matter. Pattern is closely related to Texture and is not always included in a list of the elements of design. Color and Value: Color, also known as hue, is one of the most powerful elements. It can evoke emotion and mood, enhance texture, and help create the illusion of distance. -
1 Math Action Figures- Human Body Proportion 11-18-14 AO
ARTS IMPACT LESSON PLAN Visual Arts and Math Infused Lesson Lesson One: Math Action Figures: Human Body Proportion Author: Meredith Essex Grade Level: Seventh Enduring Understanding Ratio and proportional relationships can guide accurate portrayal of human figures of any size. Lesson Description (Use for family communication and displaying student art) Students apply understandings of fractions, scale, and ratio to create a human figure in proportion. Head and total height of a human figure is drawn on grid paper based on a 1:8 ratio multiplied by a scale factor. Students then divide the figure horizontally into 8 equal parts and place parts of the figure in those fractional areas guided by a proportion diagram. Last, students use math tools and colorful pens to transform their figure into a “Math Action Figure” character with special math powers. Learning Targets and Assessment Criteria Target: Uses understanding of ratio and scale to map out a human figure. Criteria: Uses ratio of 1:8 (head to body) multiplied by a scale factor to establish proportional head and body height in drawing. Target: Documents proportion calculations. Criteria: Records ratio multiplied by scale factor equation on drawing. Target: Uses understanding of proportion to represent additional parts of a human figure. Criteria: Divides height of figure into 8 equal parts. Sketches head in top 1/8 and sketches parts of figure in other fractional areas guided by diagram and prompts. Target: Creates a math action figure using craftsmanship. Criteria: Defines contour of figure and adds invented geometric elements using pen, grid squares, and straight edge to suggest human and math-inspired characteristics. -
Leonardo's Vitruvian Man Drawing: a New Interpretation Looking at Leonardo's Geometric Constructions
Nexus Netw J (2015) 17:507–524 DOI 10.1007/s00004-015-0247-7 RESEARCH Leonardo’s Vitruvian Man Drawing: A New Interpretation Looking at Leonardo’s Geometric Constructions Vitor Murtinho1 Published online: 9 April 2015 Ó Kim Williams Books, Turin 2015 Abstract Generally speaking, today’s scientific community considers that the famous figure drawn by Leonardo da Vinci at the end of the fifteenth century was made using the Golden ratio. More specifically, the relationship established between the circle’s diameter and the side of the square is a consequence of the geometric relationship probably discovered by Euclid, but made famous by Luca Pacioli in his De Divina proportione. Aware of the close working relationship between Leonardo and Pacioli, namely in the writing of this last book, the theory that establishes a close relationship between these two figures, making use of this remarkable mathematical relationship, has gained credibility. In fact, the use of the Divina proporzione, despite being a very stimulating construction on an intellectual level, presents too great a margin of error, especially for such a competent geometrician as Leonardo da Vinci was. For that reason, the relationship between these two figures (square and circle) is grounded on a much simpler geometric relationship than the one found at the base of the definition, for instance, of Le Corbusier’s Modulor. Keywords Leonardo da Vinci Á Vitruvian man Á Vesica piscis Á Golden number Á Proportion Introduction No human investigation may claim to be a true science if it has not passed through mathematical demonstrations, and if you say that the sciences that begin and end in the mind exhibit truth, this cannot be allowed, but must be & Vitor Murtinho [email protected] 1 CES-Department of Architecture, University of Coimbra, Colegio das Artes, Largo D. -
Extending Mandelbox Fractals with Shape Inversions
Extending Mandelbox Fractals with Shape Inversions Gregg Helt Genomancer, Healdsburg, CA, USA; [email protected] Abstract The Mandelbox is a recently discovered class of escape-time fractals which use a conditional combination of reflection, spherical inversion, scaling, and translation to transform points under iteration. In this paper we introduce a new extension to Mandelbox fractals which replaces spherical inversion with a more generalized shape inversion. We then explore how this technique can be used to generate new fractals in 2D, 3D, and 4D. Mandelbox Fractals The Mandelbox is a class of escape-time fractals that was first discovered by Tom Lowe in 2010 [5]. It was named the Mandelbox both as an homage to the classic Mandelbrot set fractal and due to its overall boxlike shape when visualized, as shown in Figure 1a. The interior can be rich in self-similar fractal detail as well, as shown in Figure 1b. Many modifications to the original algorithm have been developed, almost exclusively by contributors to the FractalForums online community. Although most explorations of Mandelboxes have focused on 3D versions, the algorithm can be applied to any number of dimensions. (a) (b) (c) Figure 1: Mandelbox 3D fractal examples: (a) Mandelbox exterior , (b) same Mandelbox, but zoomed in view of small section of interior , (c) Juliabox indexed by same Mandelbox. Like the Mandelbrot set and other escape-time fractals, a Mandelbox set contains all the points whose orbits under iterative transformation by a function do not escape. For a basic Mandelbox the function to apply iteratively to each point �" is defined as a composition of transformations: �#$% = ��ℎ�������1,3 �������6 �# ∗ � + �" Boxfold and Spherefold are modified reflection and spherical inversion transforms, respectively, with parameters F, H, and L which are described below. -
Vitruvian Man
Activity 1A: Ratio Calculations: Vitruvian Man Students complete a table of ideal human proportions based on Leonardo da Vinci’s iconic drawing of Vitruvian Man. Students use the ratios to calculate dimensions of body features for different-sized individuals with Vitruvian Man’s proportions. Students measure dimensions of head and height for humans and animated characters and calculate their head : height ratios. Understandings • The relationships between body parts can be expressed mathematically using ratios. • Human body ratios vary. • A person’s or character’s appearance can be altered by varying his or her body ratios. Materials Needed • Optional: Printed or digital images of animated characters with varying body proportions (see Advance Preparation) • Handout 1: Unit Overview • Assessment Checklist: Character Design • Handout 2: Vitruvian Man Proportions • Optional: Proportion Matters slide presentation (see Advance Preparation) • Handout 3: Calculating Vitruvian Man Measurements • Handout 4: Human Head : Height Ratios • Rulers • Images of people and animated characters from Appendix A: Head : Height Proportion Images (one per student) (see Advance Preparation) • Handout 5: Journal Assignment DIGITAL/MEDIA/ARTS: MATHEMATICS 8 PROPORTION MATTERS © Education Development Center, Inc. 2011 1. Optional: Show students animated characters with varying proportions. Display the images of animated characters. Ask students: • What do you notice about the differences in the sizes of these characters’ heads in relation to their bodies? What about the sizes of their facial characteristics, such as eyes and mouths? • What effect do you think these visual properties have on your perception of the character? 2. Introduce the concept of proportion. Tell students that in this unit they will look at how body and facial proportions can be quantified mathematically. -
Insight: Algorithmic Art in the Digital Age," the State Press, September 14, 2020
Ellefson, Sam. "Insight: Algorithmic art in the digital age," The State Press, September 14, 2020 Insight: Algorithmic art in the digital age Artists working with algorithms have existed for centuries, and computers have helped bolster their work Photo by Nghi Tran (https://www.statepress.com/staff/nghi-tran) | The State Press "Algorithmic art predates the rise of technology with evidence found from Islamic tessellation to 15th-century Renaissance art." Illustration published on Sunday Sept. 13 2020 By Sam Ellefson (https://www.statepress.com/staff/sam-ellefson) | 09/14/2020 8:10pm In our present-day, digital art is de ned by its limitless stylistic possibilities and methodologies. During its formative years, neoterics sought to further the existing relationship between mathematics and art through the burgeoning technologies of the postmodern age. One of the earliest instances of digital art, born out of an urge to challenge conventional means of creating work and explore technology's relationship between aesthetic and intellectual value, is Ben Laposky's "Oscillon (http://www.vasulka.org/archive/Artists3/Laposky,BenF/ElectronicAbstractions.pdf)" works. These abstract electrical compositions, as the Iowa-born mathematician-turned-abstractionist Laposky described them, were generated by photographing electronic beams outputted by a cathode ray oscilloscope with sine wave generators. As computers gradually became more accessible to academics in the latter portion of the 20th century, mathematicians and scientists began to delve into artistic -
On a Human Scale. Drawing and Proportion of the Vitruvian Figure Veronica Riavis
7 / 2020 On a Human Scale. Drawing and Proportion of the Vitruvian Figure Veronica Riavis Abstract Among the images that describe the proportions of the human body, Leonardo da Vinci’s one is certainly the most effective, despite the fact that the iconic drawing does not faithfully follow the measurements indicated by Vitruvius. This research concerned the geometric analysis of the interpretations of the Vitruvian man proposed in the Renaissance editions of De Architectura, carried out after the aniconic editio princeps by Sulpicio da Veroli. Giovanni Battista da Sangallo drew the Vitruvian figure directly on his Sulpician copy, very similar to the images by Albrecht Dürer in The Symmetry of the Human Bodies [Dürer 1591]. Fra Giocondo proposes in 1511 two engravings of homo ad quadratum and ad circulum in the first Latin illustrated edition of De Architectura, while the man by Cesare Cesariano, author of the first version in vernacular of 1521, has a deformed body extension to adapt a geometric grid. Francesco di Giorgio Martini and Giacomo Andrea da Ferrara also propose significant versions believed to be the origin of Leonardo’s figuration due to the friendship that bound them. The man inscribed in the circle and square in the partial translation of Francesco di Giorgio’s De Architectura anticipates the da Vinci’s solution although it does not have explicit metric references, while the drawing by Giacomo Andrea da Ferrara reproduces a figure similar to Leonardo’s one. The comparison between the measures expressed by Vitruvius to proportion the man and the various graphic descriptions allows us to understand the complex story of the exegesis of the Roman treatise.