The Siebeck–Marden–Northshield Theorem and the Real Roots

Total Page:16

File Type:pdf, Size:1020Kb

The Siebeck–Marden–Northshield Theorem and the Real Roots The Siebeck–Marden–Northshield Theorem and the Real Roots of the Symbolic Cubic Equation Emil M. Prodanov School of Mathematical Sciences, Technological University Dublin, Park House, Grangegorman, 191 North Circular Road, Dublin D07 EWV4, Ireland, e-mail: [email protected] Abstract The isolation intervals of the real roots of the symbolic monic cubic polynomial x3 ax2 bx c are determined, in terms of the coefficients of the polynomial, by` solving` the Siebeck–Marden–Northshield` triangle — the equilateral triangle that projects onto the three real roots of the cubic polynomial and whose inscribed circle projects onto an interval with endpoints equal to stationary points of the polynomial. Mathematics Subject Classification Codes (2020): 26C10, 12D10, 11D25. Keywords: Polynomials; Cubic equation; Siebeck–Marden–Northshield theorem; Roots; Isolation intervals; Root bounds. arXiv:2107.01847v1 [math.GM] 5 Jul 2021 1 1 Introduction The elegant theorem of Siebeck and Marden (often referred to as Marden’s theorem) [1]–[5] relates geometrically the complex non-collinear roots of a cubic polynomial with complex coefficients to a triangle whose vertices project onto them, on one hand, and, on the other, the critical points of the polynomial to the projections of the foci of the inellipse of this triangle. This ellipse is unique and is called Steiner inellipse [6]. It is inscribed in the triangle in such way that it is tangent to the sides of the triangle at their midpoints. The real version of the Siebeck–Marden Theorem, as given by Northshield [7], states that the three real roots (not all of which are equal) of a cubic polynomial are projections of the vertices of some equilateral triangle in the plane. However, it is the inscribed circle of the equilateral triangle that projects onto an interval the endpoints of which are the stationary points of the polynomial. The goal of this work is to consider a cubic equation with real coefficients and, using the Siebeck–Marden–Northshield theorem [7], solve the equilateral triangle and find the isolation intervals of the real roots of the symbolic monic cubic polynomial x3 ax2 ` ` bx c. ` 2 Analysis The vertices of the equilateral triangle that projects onto the three real roots of the cubic polynomial x3 ax2 bx c are points P , Q, and R with coordinates x , x x ?3 , ` ` ` p 1 p 2 ´ 3q{ q x , x x ?3 , and x , x x ?3 , respectively [7]. p 2 p 3 ´ 1q{ q p 3 p 1 ´ 2q{ q Lemma 1. The monic cubic polynomial p x x3 ax2 bx c with b a2 3 has only p q“ ` ` ` ą { one real root. Proof. The discriminant of the monic cubic polynomial x3 ax2 bx c is ` ` ` ∆ 27c2 18ab 4a3 c a2b2 4b3. (1) 3 “´ ` p ´ q ` ´ It is quadratic in c and the discriminant of this quadratic is ∆ 16 a2 3b 3 (2) 2 “ p ´ q As b a2 3, one has ∆ 0 for all a and thus ∆ 0 for all a and c. Hence, the cubic ą { 2 ă 3 ă polynomial p x x3 ax2 bx c with b a2 3 has only one real root (and a pair of p q“ ` ` ` ą { complex conjugate roots). Lemma 2. The monic cubic polynomial p x x3 ax2 bx c with b a2 3 has three p q“ ` ` ` ď { real roots, provided that c c , c , where c , are the roots of the quadratic equation P r 2 1s 1 2 4 2 1 4 x2 a3 ab x a2b2 b3 0, (3) ` ˆ27 ´ 3 ˙ ´ 27 ` 27 “ 2 namely: 2 c a, b c a2 3b 3, (4) 1,2 0 27 p q“ ˘ ap ´ q where 2 1 c a, b a3 ab. (5) 0p q“´27 ` 3 Proof. The discriminant ∆ 27c2 18ab 4a3 c a2b2 4b3 of the monic cubic 3 “ ´ ` p ´ q ` ´ polynomial x3 ax2 bx c is positive between the roots of the equation ∆ 0, which ` ` ` 3 “ is quadratic in c. This is exactly equation (3) and its roots are the ones given in (4) and (5). Lemma 3 (Solving the Siebeck–Marden–Northshield Triangle). The centre of the inscribed circle of the equilateral triangle that projects onto the three real roots of the monic cubic polynomial p x x3 ax2 bx c is point a 3, 0 , the projection p q “ ` ` ` p´ { q onto the abscissa of the inflection point of p x , and the radius of the inscribed circle is p q r 1 3 ?a2 3b. The radius of the circumscribed circle is 2r 2 3 ?a2 3b. “ p { q ´ “ p { q ´ Proof. The inflection point of the graph of the monic cubic polynomial p x x3 ax2 p q“ ` ` bx c occurs at the root of p x 6x 2a, namely at x φ a 3. ` 2p q“ ` “ “´ { Given that the vertices P , Q, and R of the triangle are points of coordinates x , x p 1 p 2 ´ x ?3 , x , x x ?3 , and x , x x ?3 , respectively, the centroid of the tri- 3q{ q p 2 p 3 ´ 1q{ q p 3 p 1 ´ 2q{ q angle is point of coordinates a 3, 0 — the first coordinate projection of the inflection p´ { q point. Each side of the triangle is equal to α ?12 3 ?a2 3b. The radius of a circle in- “ p { q ´ scribed in equilateral triangle with side α is r α ?12 1 3 ?a2 3b. The radius of “ { “ p { q ´ the circumscribed circle of an equilateral triangle with side α is 2r 2 3 ?a2 3b — “ p { q ´ see Figure 1. Lemma 4. The maximum distance between the three real roots of the monic cubic poly- nomial p x x3 ax2 bx c is ?12r ?12 3 ?a2 3b. In this case, one side p q “ ` ` ` “ p { q ´ of the equilateral triangle that projects onto the roots of the monic cubic polynomial p x x3 ax2 bx c is parallel to the abscissa. p q“ ` ` ` Proof. Given that the root x2 ν2 φ a 3 of the “balanced” cubic equation 3 2 “ 3“ “ ´ { x ax bx c0 0, where c0 2a 27 ab 3, is the midpoint between its other two ` ` ` “ 2 “´ { ` { roots x , ν , a 3 a 3 b, one has x x (the second coordinate of point R) 1 3 “ 1 3 “´ { ˘ { ´ 1 ´ 2 being equal to x x (thea second coordinate of point R). Hence P and R are both above 2 ´ 3 the abscissa and are equidistant from it. Thus PR is parallel to the abscissa. Hence, the distance between x and x is exactly equal to the length α ?12 3 ?a2 3b of the 3 1 “ p { q ´ side PR. In any other case of three real roots (c c , c and c c ), the side PR will P r 2 1s ‰ 0 not be parallel to the abscissa and hence the projection of PR onto the abscissa will be shorter than the length of PR, that is, the three real roots of the cubic polynomial will lie in an interval of length smaller than α ?12 3 ?a2 3b. “ p { q ´ 3 Figure 1 Siebeck–Marden–Northshield Theorem: Any three real numbers, not all equal, are the projections of the vertices of some equilateral triangle in the plane. For a cubic polynomial p x x3 ax2 bx c with three real roots (not all equal), the inscribed circle of the equilateral triangle thatp q“ projects` onto` those` roots itself projects to an interval with endpoints equal to critical points of p x [7]. The vertices of the triangle p q are points P , Q, and R with coordinates x1, x2 x3 ?3 , x2, x3 x1 ?3 , and x3, x1 x2 ?3 , respectively [7]. The centroid of the trianglep isp at the´ projq{ ectionq p ofp the´ inflectionq{ q pointp of p px .´ Theq{ radiusq of the inscribed circle is r 1 3 ?a2 3b. The radius of the circumscribed circle is 2r p 2q 3 ?a2 3b. The maximum distance between“ p { theq three´ real roots of the monic cubic polynomial p x “x3 p { axq 2 bx´ c is equal to the side of the triangle: α ?12r ?12 3 ?a2 3b. This occurs in thep caseq“ of the` “balanced”` ` 3 “ “ p { q ´ cubic (with c c0 2a 27 ab 3), when one of the sides of the triangle is parallel to the abscissa. For “ “´ { ` { any other c such that c2 c c1, the three real roots of the cubic lie within a shorter interval. ď ď Theorem 1. The monic cubic polynomial p x x3 ax2 bx c, for which b a2 3 p q“ ` ` ` ă { and c c , c , has three real roots x x x , at least two of which are different P r 2 1s 3 ď 2 ď 1 and any two of which are not farther apart than ?12 3 ?a2 3b, with the following p { q ´ isolation intervals: (I) For c c c : x ν ,µ , x µ , φ , and x ν ,ξ . 2 ď ď 0 3 P r 3 2s 2 P r 2 s 1 P r 1 2s (II) For c c c : x ξ ,ν , x φ, µ , and x µ ,ν , 0 ď ď 1 3 P r 1 3s 2 P r 1s 1 P r 1 1s where: 3 2 (i) µ1,2 is the double root and ξ1,2 is the simple root of p1,2 x x ax bx c1,2, 2 p q“ ` ` ` that is, µ1,2 are the roots of 3x 2ax b 0, namely: µ1,2 a 3 r 2 ` ` “ “ ´ { 2˘ “ a 3 1 3 ?a 3b and ξ , a 2µ , a 3 2r a 3 2 3 ?a 3b.
Recommended publications
  • Self-Inverse Gemini Triangles
    INTERNATIONAL JOURNAL OF GEOMETRY Vol. 9 (2020), No. 1, 25 - 39 SELF-INVERSE GEMINI TRIANGLES CLARK KIMBERLING and PETER MOSES Abstract. In the plane of a triangle ABC, every triangle center U = u : v : w (barycentric coordinates) is associated with a central triangle having A-vertex AU = −u : v + w : v + w. The triangle AU BU CU is a self-inverse Gemini triangle. Let mU (X) be the image of a point X under the collineation that maps A; B; C; G respectively onto AU ;BU ;CU ;G, where G is the centroid of ABC. Then mU (mU (X)) = X: Properties of the self-inverse mapping mU are presented, with attention to associated conics (e.g., Jerabek, Kiepert, Feuerbach, Nagel, Steiner), as well as cubics of the types pK(Y; Y ) and pK(U ∗ Y; Y ). 1. Introduction The term Gemini triangle, introduced in the Encyclopedia of Triangle Centers (ETC [7], just before X(24537)), applies to certain triangles defined by barycentric coordinates. In keeping with the meaning of gemini, these triangles tend to occur in pairs. Specifically, for a given reference triangle ABC with sidelengths a; b; c, a Germini triangle A0B0C0 is a cen- tral triangle ([6], pp. 53-56) with A-vertex given by (1.1) A0 = f(a; b; c): g(b; c; a): g(b; a; c); where f and g are center functions ([6], p. 46). Because A0B0C0 is a central triangle, the vertices B0 and C0 can be read from (1.1) as B0 = g(c; b; a): f(b; c; a): g(c; a; b) C0 = g(a; b; c): g(a; c; b): f(c; a; b): Now suppose that U = u : v : w is a triangle center, and let 0 −u v + w v + w 1 MU = @ w + u −v w + u A : u + v u + v −w Keywords and phrases Triangle, Gemini triangle, barycentric coordinates, collineation, conic, cubic, circumcircle, Jerabek, Kiepert, Feuerbach, Nagel, Steiner (2010)Mathematics Subject Classification: 51N15, 51N20 Received: 13.10.2019.
    [Show full text]
  • A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel
    A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel Abstract. The Siebeck–Marden theorem relates the roots of a third degree polynomial and the roots of its derivative in a geometrical way. A few geometric arguments imply that every inellipse for a triangle is uniquely related to a certain logarithmic potential via its focal points. This fact provides a new direct proof of a general form of the result of Siebeck and Marden. Given three noncollinear points a, b, c ∈ C, we can consider the cubic polynomial P(z) = (z − a)(z − b)(z − c), whose derivative P (z) has two roots f1, f2. The Gauss–Lucas theorem is a well-known result which states that given a polynomial Q with roots z1,...,zn, the roots of its derivative Q are in the convex hull of z1,...,zn. In the simple case where we have only three roots, there is a more precise result. The roots f1, f2 of the derivative polynomial are situated in the interior of the triangle abc and they have an interesting geometric property: f1 and f2 are the focal points of the unique ellipse that is tangent to the sides of the triangle abc at its midpoints. This ellipse is called the Steiner inellipse associated to the triangle abc. In the rest of this note, we use the term inellipse to denote an ellipse situated in a triangle that is tangent to all three of its sides. This geometric connection between the roots of P and the roots of P was first observed by Siebeck (1864) [12] and was reproved by Marden (1945) [8].
    [Show full text]
  • An Area Inequality for Ellipses Inscribed in Quadrilaterals
    1 Introduction It is well known(see [CH], [K], or [MP]) that there is a unique ellipse in- scribed in a given triangle, T , tangent to the sides of T at their respective midpoints. This is often called the midpoint or Steiner inellipse, and it can be characterized as the inscribed ellipse having maximum area. In addition, one has the following inequality. If E denotes any ellipse inscribed in T , then Area (E) π , (trineq) Area (T ) ≤ 3√3 with equality if and only if E is the midpoint ellipse. In [MP] the authors also discuss a connection between the Steiner ellipse and the orthogonal least squares line for the vertices of T . Definition: The line, £, is called a line of best fit for n given points z1, ..., zn n 2 in C, if £ minimizes d (zj ,l) among all lines l in the plane. Here d (zj,l) j=1 denotes the distance(Euclidean)P from zj to l. In [MP] the authors prove the following results, some of which are also proven in 1 n Theorem A: Suppose zj are points in C,g = zj is the centroid, and n j=1 n n 2 2 2 P Z = (zj g) = zj ng . j=1 − j=1 − (a)P If Z = 0, thenP every line through g is a line of best fit for the points z1, ..., zn. (b) If Z = 0, then the line, £, thru g that is parallel to the vector from 6 (0, 0) to √Z is the unique line of best fit for z1, ..., zn.
    [Show full text]
  • Permutation Ellipses
    Journal for Geometry and Graphics Volume 24 (2020), No. 2, 233–247 Permutation Ellipses Clark Kimberling1, Peter J. C. Moses2 1Department of Mathematics, University of Evansville, Evansville, Indiana 47722, USA [email protected] 2Engineering Division, Moparmatic Co., Astwood Bank, Nr. Redditch, Worcestershire, B96 6DT, UK [email protected] Abstract. We use homogeneous coordinates in the plane of a triangle to define a family of ellipses having the centroid of the triangle as center. The family, which includes the Steiner circumscribed and inscribed ellipses, is closed under many operations, including permutation of coordinates, complements and anticomple- ments, duality, and inversion. Key Words: barycentric coordinates, Steiner circumellipse, Steiner inellipse, com- plement and anticomplement, dual conic, inversion in ellipse, Frégier ellipse MSC 2020: 51N20, 51N15 1 Introduction In 1827, something revolutionary happened in triangle geometry. A descendant of Martin Luther named Möbius introduced barycentric coordinates. Suddenly, points and lines in the plane of a triangle ABC with sidelengths a, b, c had a new kind of representation, and traditional geometric relationships found new algebraic kinds of expression. The lengths a, b, c came to be regarded as variables or indeterminates, and a criterion for collinearity of three points became the zeroness of a determinant, as did the concurrence of three lines. More recently, algebraic concepts have been imposed on the objects of triangle geometry. You can make up a suitable function f(a, b, c) and say “Let P be the point with barycentric coordinates f(a, b, c): f(b, c, a): f(c, a, b)” and then use algebra to find geometrically notable properties of P .
    [Show full text]
  • Steiner's Hat: a Constant-Area Deltoid Associated with the Ellipse
    KoG•24–2020 R. Garcia, D. Reznik, H. Stachel, M. Helman: Steiner’s Hat: a Constant-Area Deltoid ... https://doi.org/10.31896/k.24.2 RONALDO GARCIA, DAN REZNIK Original scientific paper HELLMUTH STACHEL, MARK HELMAN Accepted 5. 10. 2020. Steiner's Hat: a Constant-Area Deltoid Associated with the Ellipse Steiner's Hat: a Constant-Area Deltoid Associ- Steinerova krivulja: deltoide konstantne povrˇsine ated with the Ellipse pridruˇzene elipsi ABSTRACT SAZETAKˇ The Negative Pedal Curve (NPC) of the Ellipse with re- Negativno noˇziˇsnakrivulja elipse s obzirom na neku nje- spect to a boundary point M is a 3-cusp closed-curve which zinu toˇcku M je zatvorena krivulja s tri ˇsiljka koja je afina is the affine image of the Steiner Deltoid. Over all M the slika Steinerove deltoide. Za sve toˇcke M na elipsi krivulje family has invariant area and displays an array of interesting dobivene familije imaju istu povrˇsinui niz zanimljivih svoj- properties. stava. Key words: curve, envelope, ellipse, pedal, evolute, deltoid, Poncelet, osculating, orthologic Kljuˇcnerijeˇci: krivulja, envelopa, elipsa, noˇziˇsnakrivulja, evoluta, deltoida, Poncelet, oskulacija, ortologija MSC2010: 51M04 51N20 65D18 1 Introduction Main Results: 0 0 Given an ellipse E with non-zero semi-axes a;b centered • The triangle T defined by the 3 cusps Pi has invariant at O, let M be a point in the plane. The Negative Pedal area over M, Figure 7. Curve (NPC) of E with respect to M is the envelope of • The triangle T defined by the pre-images Pi of the 3 lines passing through points P(t) on the boundary of E cusps has invariant area over M, Figure 7.
    [Show full text]
  • An Elementary Proof of Marden's Theorem
    An Elementary Proof of Marden’s Theorem Dan Kalman What I call Marden’s Theorem is one of my favorite results in mathematics. It es- tablishes a fantastic relation between the geometry of plane figures and the relative positions of roots of a polynomial and its derivative. Although it has a much more general statement, here is the version that I like best: Marden’s Theorem. Let p(z) be a third-degree polynomial with complex coefficients, and whose roots z1,z2, and z3 are noncollinear points in the complex plane. Let T be the triangle with vertices at z1,z2, and z3. There is a unique ellipse inscribed in T and tangent to the sides at their midpoints. The foci of this ellipse are the roots of p(z). I call this Marden’s Theorem because I first read it in M. Marden’s wonderful book [6]. But this material appeared previously in Marden’s earlier paper [5]. In both sources Marden attributes the theorem to Siebeck, citing a paper from 1864 [8]. In- deed, Marden reports appearances of various versions of the theorem in nine papers spanning the period from 1864 to 1928. Of particular interest in what follows below is an 1892 paper by Maxime Bocherˆ [1]. In his presentation Marden states the theorem in a more general form than given m1 above, corresponding to the logarithmic derivative of a product (z − z1) (z − m2 m3 z2) (z − z3) where the only restriction on the exponents m j is that they be nonzero, and with a general conic section taking the place of the ellipse.
    [Show full text]
  • Mixed Intersection of Cevians and Perspective Triangles
    15TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2012 ISGG 1–5 AUGUST, 2012, MONTREAL, CANADA MIXED INTERSECTION OF CEVIANS AND PERSPECTIVE TRIANGLES Boris ODEHNAL Dresden University of Technology, Germany ABSTRACT: Any point P in the plane of a triangle ∆ = (A,B,C) can be considered as the intersection of certain Cevians, whether P is a triangle center or not. Taking two centers, say Y and Z, we find six Cevians with a total of 11 points of intersection, among them ∆’s vertices and Y and Z. The remaining six points form two triangles ∆1 and ∆2 which are both perspective to the base triangle ∆ and to each other. The three centers of perspectivity are triangle centers of ∆ and collinear, independent of the choice of Y and Z. Furthermore any pair out of ∆, ∆1, and ∆2 has the same perspectrix which yields a closed chain of Desargues’ (103,103) configurations. Then special affine appearances of Desargues’ configurations can be obtained by a suitable choice of Y and Z. Any choice of a fixed center Y leads to exactly one center Z as the fourth point of intersection of two conic sections circumscribed to ∆ such that the perspectors P1, P2, and consequently P12 are points at infinity. For fixed center Y we obtain a quadratic transformation in ∆’s plane which transforms central lines to central conic sections. Keywords: triangle, Cevian, perspective triangles, Desargues configuration, triangle center, cross- point 1. INTRODUCTION C Many triangle centers appear as the intersection of certain Cevians. For example the incenter X1 X4 is the intersection of the interior angle bisectors h of a triangle ∆ with vertices A, B, C.
    [Show full text]
  • 104.08 Finding Triangles with Given Circum-Medial Triangle
    The Mathematical Gazette March 2020 104.08 Finding triangles with given circum-medial triangle Let △A1B1C1 be an arbitrary triangle and P an arbitrary point not on its circumcircle Σ. The ‘other’ intersection points of the ‘cevians’ A1PB,,1P C1P with Σ, the points AB,,,C make the so-called circumcevian triangle of △A1B1C1 with respect to PP. If is the centroid of △A1B1C1 then △ABC is called * the circum-medial triangle of △A1B1C1 (see Figure 1: P = centroid G1). C1 A B1 B G1 A1 C FIGURE 1: How to reverse the process of constructing the circum-medial triangle? A recent paper [1] was concerned with iterating the construction of the circum-medial triangle (it turned out that the shape of the triangles converges to equilaterality). Here, we reverse the process. Specifically, given △ABC we look for △A1B1C1 such that △ABC is the circum-medial triangle of △A1B1C1. It turns out that there are in general two solutions, namely, the circumcevian triangles of △ABC with respect to the foci of the Steiner inellipse of △ABC. Theorem 1: Given △ABCGand a point 1 not on its circumcircle Σ, let △A1B1C1 be its circumcevian triangle with respect to G1. Then G1 is the centroid of △A1B1C1 if, and only if, it is a focus of the Steiner inellipse of △ABC. Remark: Since an ellipse has two foci, this yields the two mentioned solutions (see Figure 2), except in the case where △ABC is equilateral, when * Unfortunately, not every language has such short and precise terms for the corresponding triangles. For instance in German there is no such term, one would have to describe the whole process with many words.
    [Show full text]
  • Dao Thanh Oai, Generalizations of Some Famous Classical Euclidean
    International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 c IJCDM September 2016, Volume 1, No.3, pp.13-20. Received 15 July 2016. Published on-line 22 July 2016 web: http://www.journal-1.eu/ c The Author(s) This article is published with open access1. Generalizations of some famous classical Euclidean geometry theorems Dao Thanh Oai Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Vietnam e-mail: [email protected] Abstract. In this note, we introduce generalizations of some famous classical Euclidean geometry theorems. We use problems in order to state the theorems. Keywords. Euclidean geometry, Triangle geometry. Mathematics Subject Classification (2010). 51-04, 68T01, 68T99. Problem 1 ([1],[2], A generalization the Lester circle theorem associated with the Neuberg cubic). Let P be a point on the Neuberg cubic. Let PA be the reflection of P in line BC, and define PB and PC cyclically. It is known that the lines APA, BPB, CPC concur. Let Q(P ) be the point of concurrence. Then two Fermat points, P , Q(P ) lie on a circle. Remark: Let P is the circumcenter, it is well-know that Q(P ) is the Nine point center, the conjucture becomes Lester circle theorem, you can see the Lester circle theorem in([3],[4]). Problem 2 ([5],[6], A generalization of the Parry circle theorem associated with two isogonal conjugate points). Let a rectangular circumhyperbola of ABC, let L be the isogonal conjugate line of the hyperbola. The tangent line to the hyperbola at X(4) meets L at point K.
    [Show full text]
  • An Area Inequality for Ellipses Inscribed in Quadrilaterals
    Journal of Mathematical Inequalities Volume 4, Number 3 (2010), 431–443 AN AREA INEQUALITY FOR ELLIPSES INSCRIBED IN QUADRILATERALS ALAN HORWITZ (Communicated by S. S. Gomis) Area(E) Abstract. If E is any ellipse inscribed in a convex quadrilateral, –D, then we prove that Area(–D) π , and equality holds if and only if –D is a parallelogram and E is tangent to the sides of –D 4 at the midpoints. We also prove that the foci of the unique ellipse of maximal area inscribed in a parallelogram, –D, lie on the orthogonal least squares line for the vertices of –D. This does not hold in general for convex quadrilaterals. 1. Introduction It is well known (see [1], [4], or [5]) that there is a unique ellipse inscribed in a given triangle, T , tangent to the sides of T at their respective midpoints. This is often called the midpoint or Steiner inellipse, and it can be characterized as the inscribed ellipse having maximum area. In addition, one has the following inequality. If E denotes any ellipse inscribed in T ,then Area(E) π √ , (1) Area(T) 3 3 with equality if and only if E is the midpoint ellipse. In [5] the authors also discuss a connection between the Steiner ellipse and the orthogonal least squares line for the vertices of T . DEFINITION 1. The line, £, is called a line of best fitforn given points z1,...,zn n 2 in C,if£ minimizes ∑ d (z j,l) among all lines l in the plane. Here d (z j,l) denotes j=1 the distance(Euclidean) from z j to l .
    [Show full text]
  • Perspective Fields-Part2 Size
    Part 2 – Algebraic Approach and Theory © Chris van Tienhoven [email protected] There is a most special application for Perspective Fields. Because points are generated structurally in Perspective Fields this also can be seen in the formulas of the points. All points in the field we described earlier (defined by X13, X2, X15, X6) have the same algebraic structure in the formulas of their barycentric coordinates: f (a,b,c) = i a2 SA + j SB SC + k a2∆ Where: ∆ = Area of Reference Triangle a,b,c are lenghts of sides Reference Triangle SA = (-a2 + b2 + c2 ) / 2 SB = ( a2 - b2 + c2 ) / 2 SC = ( a2 + b2 - c2 ) / 2 i, j, k are variables uniquely defining the points in a Perspective Field So every point in the field can be defined as a triple (i : j : k). Because only the ratios of variables i, j, k are of importance the triple can be considered as alternate homogeneous coordinates for fieldpoints. The importance of this is that a fieldpoint now is: independant of sides and angles of the referencetriangle and uniquely defined just by 3 numbers. Look at next picture to see what structure comes out. 2 Homogeneous Coordinates (i : j : k) with respect to barycentric coordinates f (a,b,c) = i a2 SA + j SB SC + k a2∆ Note that for all Fieldpoints: . on X4-X6-Line 1st coordinate = 0 . on BrocardAxis 2nd coordinate = 0 . on Euler Line 3rd coordinate = 0 Note that this formula-structure is only valid for Fieldpoints. Non-fieldpoints will have a different formula-structure. 3 Point of departure: .
    [Show full text]
  • 38 Finding the Steiner Inellipse Using Complex Numbers [35 Marks]. 1
    38 Finding the Steiner inellipse using complex numbers [35 marks]. 1. [Maximum marks: 35] The Steiner inellipse (pictured above) is the unique ellipse, which is tangent to the 3 midpoints of a triangle. We will explore a method of finding the equation of this ellipse using Marden’s theorem. (a) We start with a cubic equation: ! ! = !! − !! + ! − 1. Write this in the form ! ! = (! − !)(!! + !" + !) where !"ℝ. Hence find the 3 roots of ! ! . [7] (b) Draw a sketch of these 3 roots on an Argand diagram. Join these 3 roots to make a triangle. Label this triangle with points F,G,H. Find the coordinates of the midpoints of the sides of this triangle. Label these as C, D, E on the sketch. [3] (c) Solve !′ ! = 0. Sketch these coordinates A, B on the Argand diagram. [6] We now treat our diagram as the real Cartesian x,y plane. Marden’s theorem states that the coordinates A and B form the foci of the unique ellipse tangent to the triangle FGH at its midpoints C,D,E. This is illustrated at the top of the page. When A and B have coordinates (ℎ, ±!) we have the following equation for our ellipse: (! − ℎ)! !! + = 1 !! !! Where: !! − !! = !!. (d) Find ! !"# ! and hence find the equation for this ellipse. [7] Copyright Andrew Chambers 2020. Licensed for non-commercial use only. Visit ibmathsresources.com to download the full worked mark-scheme and for 300 exploration ideas. 39 (e) Show that the equation of the ellipse tangent to the midpoints of the triangle with vertices (0,2), (0,-2), (2,0) is given by: 4 2 ! !! = − 3 ! − 3 3 [8] (f) Find the gradient of the ellipse at (1,1) and (1,-1).
    [Show full text]