Finding Ellipses What Blaschke Products, Poncelet’S Theorem, and the Numerical Range Know About Each Other

Total Page:16

File Type:pdf, Size:1020Kb

Finding Ellipses What Blaschke Products, Poncelet’S Theorem, and the Numerical Range Know About Each Other AMS / MAA THE CARUS MATHEMATICAL MONOGRAPHS VOL 34 Finding Ellipses What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other Ulrich Daepp Pamela Gorkin Andrew Shaffer Karl Voss 10.1090/car/034 Finding Ellipses What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other AMS/MAA THE CARUS MATHEMATICAL MONOGRAPHS VOL 34 Finding Ellipses What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other Ulrich Daepp Pamela Gorkin Andrew Shaffer Karl Voss Committee on Books Jennifer J. Quinn, Chair 2017–2018 Editorial Committee Fernando Gouvea, Editor Francis Bonahon Alex Iosevich Gizem Karaali Kristin Estella Lauter Steven J. Miller David P. Roberts 2010 Mathematics Subject Classification. Primary 47A05, 47A12, 30J10, 15-02, 15A60, 51-02, 51M04, 51N35. For additional information and updates on this book, visit www.ams.org/bookpages/car-34 Library of Congress Cataloging-in-Publication Data Names: Daepp, Ulrich, author. Title: Finding ellipses: What Blaschke products, Poncelet’s theorem, and the numerical range know about each other / Ulrich Daepp [and three others]. Description: Providence, Rhode Island: MAA Press, An imprint of the American Math- ematical Society, [2018] | Series: The Carus mathematical monographs; volume 34 | Includes bibliographical references and index. Identifiers: LCCN 2018021655 | ISBN 9781470443832 (alk. paper) Subjects: LCSH: Ellipse. | Conic sections. | Geometry, Projective. | AMS: Operator theory – General theory of linear operators – General (adjoints, conjugates, products, inverses, domains, ranges, etc.). msc | Operator theory – General theory of linear operators – Numerical range, numerical radius. msc | Functions of a complex variable – Function theory on the disc – Blaschke products. msc | Linear and multilinear algebra; matrix theory – Research exposition (monographs, survey articles). msc | Linear and multi- linear algebra; matrix theory – Basic linear algebra – Norms of matrices, numerical range, applications of functional analysis to matrix theory. msc | Geometry – Research exposition (monographs, survey articles). msc | Geometry – Real and complex geom- etry – Elementary problems in Euclidean geometries. msc | Geometry – Analytic and descriptive geometry – Questions of classical algebraic geometry. msc Classification: LCC QA559 .F56 2018 | DDC 516/.152–dc23 LC record available at https://lccn.loc.gov/2018021655 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions. Send requests for translation rights and licensed reprints to [email protected]. © 2018 by the author. All rights reserved. Printed in the United States of America. ⃝1 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10 9 8 7 6 5 4 3 2 1 23 22 21 20 19 18 Contents Preface vii Part 1 1 Chapter 1 The Surprising Ellipse 3 Chapter 2 The Ellipse Three Ways 13 Chapter 3 Blaschke Products 23 Chapter 4 Blaschke Products and Ellipses 35 Chapter 5 Poncelet’s Theorem for Triangles 47 Chapter 6 The Numerical Range 61 Chapter 7 The Connection Revealed 75 Intermezzo 85 Chapter 8 And Now for Something Completely Different... Benford’s Law 87 Part 2 101 Chapter 9 Compressions of the Shift Operator: The Basics 103 Chapter 10 Higher Dimensions: Not Your Poncelet Ellipse 121 Chapter 11 Interpolation with Blaschke Products 133 Chapter 12 Poncelet’s Theorem for 푛-Gons 147 v vi Contents Chapter 13 Kippenhahn’s Curve and Blaschke’s Products 159 Chapter 14 Iteration, Ellipses, and Blaschke Products 177 On Surprising Connections 195 Part 3 199 Chapter 15 Fourteen Projects for Fourteen Chapters 201 15.1 Constructing Great Ellipses 201 15.2 What’s in the Envelope? 201 15.3 Sendov’s Conjecture 206 15.4 Generalizing Steiner Inellipses 210 15.5 Steiner’s Porism and Inversion 213 15.6 The Numerical Range and Radius 222 15.7 Pedal Curves and Foci 224 15.8 The Power of Positivity 228 15.9 Similarity and the Numerical Range 231 15.10 The Importance of Being Zero 234 15.11 Building a Better Interpolant 237 15.12 Foci of Algebraic Curves 241 15.13 Companion Matrices and Kippenhahn 245 15.14 Denjoy–Wolff Points and Blaschke Products 251 Bibliography 255 Index 263 Preface [Mathematics] is security. Certainty. Truth. Beauty. Insight. Structure. Architecture. I see mathematics, the part of human knowledge that I call mathematics, as one thing—one great, glo- rious thing. Whether it is differential topology, or functional analysis, or homological algebra, it is all one thing.... They are intimately interconnected, and they are all facets of the same thing. That interconnection, that architecture, is secure truth and is beauty. That’s what mathematics is to me. –Paul Halmos, Celebrating 50 Years of Mathematics Discovering surprising connections between one area of mathematics and another area is not only exciting, it is useful. Laplace transforms al- low us to switch between differential equations and algebraic equations, the fundamental theorem of algebra can be proved using complex analy- sis, and group theory plays a fundamental role in the study of public-key cryptography. If we can think of an object from different angles, these different perspectives aid our understanding. It is in that vein thatwe have written this book: We look at three seemingly different stories and a hidden connection between them. The first of our stories is complex—that is, it is about complex func- tion theory. In complex analysis, linear fractional transformations are among the first functions that we study. We understand their geometric and function-theoretic properties, and we know that they play an im- portant role in the study of analytic functions. In the class of linear frac- tional transformations, the automorphisms of the unit disk stand out for the geometric and analytic insight they provide. The functions that we focus on are a natural generalization of the disk automorphisms; they are vii viii Preface finite products of these automorphisms and are called Blaschke prod- ucts, in honor of the German geometer Wilhelm Blaschke. While we know, for example, that automorphisms of the disk map circles to cir- cles (if we agree that lines are circles), much less is known about the geometry of Blaschke products. The second story comes from projective geometry. Here we focus on Poncelet’s closure theorem, a beautiful geometric result about conics in- scribed in polygons that are themselves inscribed in conics. We devote some attention to precursors of Poncelet’s theorem, including Chapple’s formula and Fuss’s theorem. In the final part of this book we will also consider variations on this theme, including Steiner’s porism. The final story is about the numerical range of a matrix. The numer- ical range is the range of a quadratic form associated with a matrix but restricted to the unit sphere of ℂ푛. The numerical range always con- tains the eigenvalues of the matrix, and it often can tell you more about a matrix than the eigenvalues can. While questions about the numerical ranges of 2 × 2 matrices are (relatively) easily analyzed, consideration of 푛 × 푛 matrices for 푛 > 2 is deeper. Even 3 × 3 matrices lead to deep and interesting questions! What is the hidden connection between these three stories? Curiously, the connection is an object we have not discussed much yet: It is the ellipse. In fact, this book is really a story about the ellipse, an object studied by the Greek mathematicians Menaechmus, Euclid, Ap- polonius of Perga, and Pappus, among others. Later, Kepler developed a description of planetary motion, leading to his first law: The orbit ofa planet is elliptical with one focus at the Sun. In spite of this long history, ellipses never cease to surprise us. It turns out that ellipses provide a remarkable amount of information about Blaschke products. Ellipses can tell us when a Blaschke product has a nontrivial factorization with respect to composition. And when we study the dynamics of Blaschke products, ellipses can tell us what to expect. The ellipse even establishes a connection between Blaschke products and a useful tool for detecting tax fraud, known as Benford’s law. But why does an ellipse know anything about these particular ra- tional functions? That is the story we wish to tell, and it is a story that Preface ix relies heavily on properties of the numerical range of a class of operators and that story, in turn, relies on projective geometry. The first part of this book (Chapter 1 through Chapter 7) focuses on Blaschke products that are products of three disk automorphisms, el- lipses that are inscribed in triangles, and 2 × 2 matrices. In this case, ellipses suggest directions to study. Each Blaschke product of degree 3 is naturally associated with an ellipse, as is each 2×2 matrix. The relation- ship between Blaschke products, 2 × 2 matrices, and Poncelet’s theorem will be revealed in Chapter 7. This part of the book also introduces the basic ideas of two-dimensional projective geometry and provides a proof of Poncelet’s theorem in the event that the circumscribing polygons are triangles. After concluding Part 1, the reader will be treated to an inter- mezzo (Chapter 8), as we focus on the surprising connection between Poncelet’s theorem and Benford’s law.
Recommended publications
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • Automatic Estimation of Sphere Centers from Images of Calibrated Cameras
    Automatic Estimation of Sphere Centers from Images of Calibrated Cameras Levente Hajder 1 , Tekla Toth´ 1 and Zoltan´ Pusztai 1 1Department of Algorithms and Their Applications, Eotv¨ os¨ Lorand´ University, Pazm´ any´ Peter´ stny. 1/C, Budapest, Hungary, H-1117 fhajder,tekla.toth,[email protected] Keywords: Ellipse Detection, Spatial Estimation, Calibrated Camera, 3D Computer Vision Abstract: Calibration of devices with different modalities is a key problem in robotic vision. Regular spatial objects, such as planes, are frequently used for this task. This paper deals with the automatic detection of ellipses in camera images, as well as to estimate the 3D position of the spheres corresponding to the detected 2D ellipses. We propose two novel methods to (i) detect an ellipse in camera images and (ii) estimate the spatial location of the corresponding sphere if its size is known. The algorithms are tested both quantitatively and qualitatively. They are applied for calibrating the sensor system of autonomous cars equipped with digital cameras, depth sensors and LiDAR devices. 1 INTRODUCTION putation and memory costs. Probabilistic Hough Transform (PHT) is a variant of the classical HT: it Ellipse fitting in images has been a long researched randomly selects a small subset of the edge points problem in computer vision for many decades (Prof- which is used as input for HT (Kiryati et al., 1991). fitt, 1982). Ellipses can be used for camera calibra- The 5D parameter space can be divided into two tion (Ji and Hu, 2001; Heikkila, 2000), estimating the pieces. First, the ellipse center is estimated, then the position of parts in an assembly system (Shin et al., remaining three parameters are found in the second 2011) or for defect detection in printed circuit boards stage (Yuen et al., 1989; Tsuji and Matsumoto, 1978).
    [Show full text]
  • Exploding the Ellipse Arnold Good
    Exploding the Ellipse Arnold Good Mathematics Teacher, March 1999, Volume 92, Number 3, pp. 186–188 Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). More than 200 books, videos, software, posters, and research reports are available through NCTM’S publication program. Individual members receive a 20% reduction off the list price. For more information on membership in the NCTM, please call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright May 1991 by the National Council of Teachers of Mathematics. All rights reserved. Arnold Good, Framingham State College, Framingham, MA 01701, is experimenting with a new approach to teaching second-year calculus that stresses sequences and series over integration techniques. eaders are advised to proceed with caution. Those with a weak heart may wish to consult a physician first. What we are about to do is explode an ellipse. This Rrisky business is not often undertaken by the professional mathematician, whose polytechnic endeavors are usually limited to encounters with administrators. Ellipses of the standard form of x2 y2 1 5 1, a2 b2 where a > b, are not suitable for exploding because they just move out of view as they explode. Hence, before the ellipse explodes, we must secure it in the neighborhood of the origin by translating the left vertex to the origin and anchoring the left focus to a point on the x-axis.
    [Show full text]
  • Algebraic Study of the Apollonius Circle of Three Ellipses
    EWCG 2005, Eindhoven, March 9–11, 2005 Algebraic Study of the Apollonius Circle of Three Ellipses Ioannis Z. Emiris∗ George M. Tzoumas∗ Abstract methods readily extend to arbitrary inputs. The algorithms for the Apollonius diagram of el- We study the external tritangent Apollonius (or lipses typically use the following 2 main predicates. Voronoi) circle to three ellipses. This problem arises Further predicates are examined in [4]. when one wishes to compute the Apollonius (or (1) given two ellipses and a point outside of both, Voronoi) diagram of a set of ellipses, but is also of decide which is the ellipse closest to the point, independent interest in enumerative geometry. This under the Euclidean metric paper is restricted to non-intersecting ellipses, but the extension to arbitrary ellipses is possible. (2) given 4 ellipses, decide the relative position of the We propose an efficient representation of the dis- fourth one with respect to the external tritangent tance between a point and an ellipse by considering a Apollonius circle of the first three parametric circle tangent to an ellipse. The distance For predicate (1) we consider a circle, centered at the of its center to the ellipse is expressed by requiring point, with unknown radius, which corresponds to the that their characteristic polynomial have at least one distance to be compared. A tangency point between multiple real root. We study the complexity of the the circle and the ellipse exists iff the discriminant tritangent Apollonius circle problem, using the above of the corresponding pencil’s determinant vanishes. representation for the distance, as well as sparse (or Hence we arrive at a method using algebraic numbers toric) elimination.
    [Show full text]
  • Self-Inverse Gemini Triangles
    INTERNATIONAL JOURNAL OF GEOMETRY Vol. 9 (2020), No. 1, 25 - 39 SELF-INVERSE GEMINI TRIANGLES CLARK KIMBERLING and PETER MOSES Abstract. In the plane of a triangle ABC, every triangle center U = u : v : w (barycentric coordinates) is associated with a central triangle having A-vertex AU = −u : v + w : v + w. The triangle AU BU CU is a self-inverse Gemini triangle. Let mU (X) be the image of a point X under the collineation that maps A; B; C; G respectively onto AU ;BU ;CU ;G, where G is the centroid of ABC. Then mU (mU (X)) = X: Properties of the self-inverse mapping mU are presented, with attention to associated conics (e.g., Jerabek, Kiepert, Feuerbach, Nagel, Steiner), as well as cubics of the types pK(Y; Y ) and pK(U ∗ Y; Y ). 1. Introduction The term Gemini triangle, introduced in the Encyclopedia of Triangle Centers (ETC [7], just before X(24537)), applies to certain triangles defined by barycentric coordinates. In keeping with the meaning of gemini, these triangles tend to occur in pairs. Specifically, for a given reference triangle ABC with sidelengths a; b; c, a Germini triangle A0B0C0 is a cen- tral triangle ([6], pp. 53-56) with A-vertex given by (1.1) A0 = f(a; b; c): g(b; c; a): g(b; a; c); where f and g are center functions ([6], p. 46). Because A0B0C0 is a central triangle, the vertices B0 and C0 can be read from (1.1) as B0 = g(c; b; a): f(b; c; a): g(c; a; b) C0 = g(a; b; c): g(a; c; b): f(c; a; b): Now suppose that U = u : v : w is a triangle center, and let 0 −u v + w v + w 1 MU = @ w + u −v w + u A : u + v u + v −w Keywords and phrases Triangle, Gemini triangle, barycentric coordinates, collineation, conic, cubic, circumcircle, Jerabek, Kiepert, Feuerbach, Nagel, Steiner (2010)Mathematics Subject Classification: 51N15, 51N20 Received: 13.10.2019.
    [Show full text]
  • 2.3 Conic Sections: Ellipse
    2.3 Conic Sections: Ellipse Ellipse: (locus definition) set of all points (x, y) in the plane such that the sum of each of the distances from F1 and F2 is d. Standard Form of an Ellipse: Horizontal Ellipse Vertical Ellipse 22 22 (xh−−) ( yk) (xh−−) ( yk) +=1 +=1 ab22 ba22 center = (hk, ) 2a = length of major axis 2b = length of minor axis c = distance from center to focus cab222=− c eccentricity e = ( 01<<e the closer to 0 the more circular) a 22 (xy+12) ( −) Ex. Graph +=1 925 Center: (−1, 2 ) Endpoints of Major Axis: (-1, 7) & ( -1, -3) Endpoints of Minor Axis: (-4, -2) & (2, 2) Foci: (-1, 6) & (-1, -2) Eccentricity: 4/5 Ex. Graph xyxy22+4224330−++= x2 + 4y2 − 2x + 24y + 33 = 0 x2 − 2x + 4y2 + 24y = −33 x2 − 2x + 4( y2 + 6y) = −33 x2 − 2x +12 + 4( y2 + 6y + 32 ) = −33+1+ 4(9) (x −1)2 + 4( y + 3)2 = 4 (x −1)2 + 4( y + 3)2 4 = 4 4 (x −1)2 ( y + 3)2 + = 1 4 1 Homework: In Exercises 1-8, graph the ellipse. Find the center, the lines that contain the major and minor axes, the vertices, the endpoints of the minor axis, the foci, and the eccentricity. x2 y2 x2 y2 1. + = 1 2. + = 1 225 16 36 49 (x − 4)2 ( y + 5)2 (x +11)2 ( y + 7)2 3. + = 1 4. + = 1 25 64 1 25 (x − 2)2 ( y − 7)2 (x +1)2 ( y + 9)2 5. + = 1 6. + = 1 14 7 16 81 (x + 8)2 ( y −1)2 (x − 6)2 ( y − 8)2 7.
    [Show full text]
  • A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel
    A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel Abstract. The Siebeck–Marden theorem relates the roots of a third degree polynomial and the roots of its derivative in a geometrical way. A few geometric arguments imply that every inellipse for a triangle is uniquely related to a certain logarithmic potential via its focal points. This fact provides a new direct proof of a general form of the result of Siebeck and Marden. Given three noncollinear points a, b, c ∈ C, we can consider the cubic polynomial P(z) = (z − a)(z − b)(z − c), whose derivative P (z) has two roots f1, f2. The Gauss–Lucas theorem is a well-known result which states that given a polynomial Q with roots z1,...,zn, the roots of its derivative Q are in the convex hull of z1,...,zn. In the simple case where we have only three roots, there is a more precise result. The roots f1, f2 of the derivative polynomial are situated in the interior of the triangle abc and they have an interesting geometric property: f1 and f2 are the focal points of the unique ellipse that is tangent to the sides of the triangle abc at its midpoints. This ellipse is called the Steiner inellipse associated to the triangle abc. In the rest of this note, we use the term inellipse to denote an ellipse situated in a triangle that is tangent to all three of its sides. This geometric connection between the roots of P and the roots of P was first observed by Siebeck (1864) [12] and was reproved by Marden (1945) [8].
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Ductile Deformation - Concepts of Finite Strain
    327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body.
    [Show full text]
  • Area-Preserving Parameterizations for Spherical Ellipses
    Eurographics Symposium on Rendering 2017 Volume 36 (2017), Number 4 P. Sander and M. Zwicker (Guest Editors) Area-Preserving Parameterizations for Spherical Ellipses Ibón Guillén1;2 Carlos Ureña3 Alan King4 Marcos Fajardo4 Iliyan Georgiev4 Jorge López-Moreno2 Adrian Jarabo1 1Universidad de Zaragoza, I3A 2Universidad Rey Juan Carlos 3Universidad de Granada 4Solid Angle Abstract We present new methods for uniformly sampling the solid angle subtended by a disk. To achieve this, we devise two novel area-preserving mappings from the unit square [0;1]2 to a spherical ellipse (i.e. the projection of the disk onto the unit sphere). These mappings allow for low-variance stratified sampling of direct illumination from disk-shaped light sources. We discuss how to efficiently incorporate our methods into a production renderer and demonstrate the quality of our maps, showing significantly lower variance than previous work. CCS Concepts •Computing methodologies ! Rendering; Ray tracing; Visibility; 1. Introduction SHD15]. So far, the only practical method for uniformly sampling the solid angle of disk lights is the work by Gamito [Gam16], who Illumination from area light sources is among the most impor- proposed a rejection sampling approach that generates candidates tant lighting effects in realistic rendering, due to the ubiquity of using spherical quad sampling [UFK13]. Unfortunately, achieving such sources in real-world scenes. Monte Carlo integration is the good sample stratification with this method requires special care. standard method for computing the illumination from such lumi- naires [SWZ96]. This method is general and robust, supports arbi- In this paper we present a set of methods for uniformly sam- trary reflectance models and geometry, and predictively converges pling the solid angle subtended by an oriented disk.
    [Show full text]
  • Chapter 9. Analytic Geometry
    9.3 The Ellipse 1 Chapter 9. Analytic Geometry 9.3. The Ellipse Note. In preparation for this section, you may need to review Sections A.5, 1.1, 1.2, and 2.5. Definition. An ellipse is the collection of all points in the plane the sum of whose distances from two fixed points, called the foci, is a constant. Call the foci F1 and F2. The line line containing F1 and F2 is the major axis. The midpoint of the line segment joining the foci is the center of the ellipse. The line through the center and perpendicular to the major axis is the minor axis. The two points of intersection of the ellipse and the major axis are the vertices, V1 and V2, of the ellipse. The distance from one vertex to the other is the length of the major axis. Note. From the definition, it follows that we can draw an ellipse by driving two nails into the plane, looping a piece of string around the nails, and then putting a pencil in the loop. By then pulling the loop tight and and drawing, we get an ellipse. 9.3 The Ellipse 2 Figure 17 Page 625 Note. Suppose the foci of an ellipse lie at F1 =(−c, 0) and F2 =(c, 0), that P =(x, y) is a point on the ellipse, and that the sum of the distances from P to F1 and F2 is 2a. Figure 18 Page 625 9.3 The Ellipse 3 Then by the definition of an ellipse, d(F1,P)+d(F2,P)=2a p(x − (−c))2 +(y − 0)2 + p(x − c)2 +(y − 0)2 =2a p(x + c)2 + y2 + p(x − c)2 + y2 =2a p(x + c)2 + y2 =2a − p(x − c)2 + y2 (x + c)2 + y2 =4a2 − 4ap(x − c)2 + y2 +(x − c)2 + y2 x2 +2cx + c2 + y2 =4a2 − 4ap(x − c)2 + y2 +x2 − 2cx + c2 + y2 4cx − 4a2 = −4ap(x − c)2 + y2 cx − a2 = −ap(x − c)2 + y2 (cx − a2)2 = a2[(x − c)2 + y2] c2x2 − 2a2cx + a4 = a2(x2 − 2cx + c2 + y2) (c2 − a2)x2 − a2y2 = a2c2 − a4 (a2 − c2)x2 + a2y2 = a2(a2 − c2) x2 y2 + =1.
    [Show full text]
  • An Eloquent Formula for the Perimeter of an Ellipse Semjon Adlaj
    An Eloquent Formula for the Perimeter of an Ellipse Semjon Adlaj he values of complete elliptic integrals Define the arithmetic-geometric mean (which we of the first and the second kind are shall abbreviate as AGM) of two positive numbers expressible via power series represen- x and y as the (common) limit of the (descending) tations of the hypergeometric function sequence xn n∞ 1 and the (ascending) sequence { } = 1 (with corresponding arguments). The yn n∞ 1 with x0 x, y0 y. { } = = = T The convergence of the two indicated sequences complete elliptic integral of the first kind is also known to be eloquently expressible via an is said to be quadratic [7, p. 588]. Indeed, one might arithmetic-geometric mean, whereas (before now) readily infer that (and more) by putting the complete elliptic integral of the second kind xn yn rn : − , n N, has been deprived such an expression (of supreme = xn yn ∈ + power and simplicity). With this paper, the quest and observing that for a concise formula giving rise to an exact it- 2 2 √xn √yn 1 rn 1 rn erative swiftly convergent method permitting the rn 1 − + − − + = √xn √yn = 1 rn 1 rn calculation of the perimeter of an ellipse is over! + + + − 2 2 2 1 1 rn r Instead of an Introduction − − n , r 4 A recent survey [16] of formulae (approximate and = n ≈ exact) for calculating the perimeter of an ellipse where the sign for approximate equality might ≈ is erroneously resuméd: be interpreted here as an asymptotic (as rn tends There is no simple exact formula: to zero) equality.
    [Show full text]