FFRS-33 Morris-Et-Al-2001.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

FFRS-33 Morris-Et-Al-2001.Pdf Threatened and Potentially Threatened Freshwater Fishes of Coastal New South Wales and the Murray-Darling Basin S.A.Morris1, D.A.Pollard1, P.C.Gehrke2 & J.J.Pogonoski1, 3 1 NSW Fisheries Office of Conservation, Cronulla Fisheries Centre, Post Office Box 21, Cronulla, NSW 2230 2 NSW Fisheries Office of Conservation, Port Stephens Fisheries Centre, Private Bag 1, Nelson Bay, NSW 2315 3 Fish Section, Australian Museum, 6 College Street, Sydney, NSW 2000 Report to Fisheries Action Program and World Wide Fund for Nature Project No. AA 0959.98 December 2001 NSW Fisheries Final Report Series No. 33 ISSN 1440-3544 Threatened and potentially threatened freshwater fishes of coastal New South Wales and the Murray-Darling Basin by S.A.Morris, D.A.Pollard, P.C. Gehrke & J.J.Pogonoski. ISSN 1440-3544 Published 2001 © Copyright NSW Fisheries, Sydney Fish Illustrations by Jack Hannan, NSW Fisheries Printed by NSW Fisheries Contents i TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................................................... IV EXECUTIVE SUMMARY .............................................................................................................................V NON-TECHNICAL SUMMARY ................................................................................................................ VI 1. INTRODUCTION ....................................................................................................................................... 1 1.1. BACKGROUND TO THE STUDY................................................................................................................. 1 1.1.1. Threatened species.......................................................................................................................... 2 1.1.2. Alien species ................................................................................................................................... 3 1.1.3. Indicators of change ....................................................................................................................... 3 1.1.4. Commercial and recreational fishing ............................................................................................. 3 1.1.5. Recent trends .................................................................................................................................. 3 1.1.6. Current management ...................................................................................................................... 4 1.1.7. Recent NSW Fisheries research...................................................................................................... 5 1.1.8. Future research needs .................................................................................................................... 5 1.2. AIMS AND OBJECTIVES OF THE STUDY.................................................................................................... 6 2. METHODS .................................................................................................................................................. 7 2.1. SELECTION OF TAXA FOR INCLUSION ...................................................................................................... 7 2.2. SYNTHESIS OF AVAILABLE INFORMATION ............................................................................................... 9 2.3. SPECIALIST WORKSHOP AND CONSULTATION ....................................................................................... 10 2.4. COLLABORATION WITH STAKEHOLDERS ............................................................................................... 10 3. CONSERVATION CATEGORIES AND CRITERIA........................................................................... 11 3.1. HISTORY OF CONSERVATION CATEGORIES AND CRITERIA .................................................................... 11 4. SPECIES CONSERVATION SYNOPSES.............................................................................................. 13 4.1. SPECIES CONSERVATION SYNOPSES ARRANGED IN PHYLOGENETIC ORDER ......................................... 13 Non-parasitic lamprey............................................................................................................................ 15 Short-finned eel....................................................................................................................................... 17 Freshwater herring................................................................................................................................. 20 Climbing galaxias................................................................................................................................... 22 Barred galaxias ...................................................................................................................................... 25 Common galaxias ................................................................................................................................... 27 Mountain galaxias .................................................................................................................................. 30 Murray jollytail....................................................................................................................................... 33 Australian grayling................................................................................................................................. 35 Freshwater catfish .................................................................................................................................. 38 Murray hardyhead.................................................................................................................................. 43 Darling hardyhead ................................................................................................................................. 43 Non-speckled hardyhead ........................................................................................................................ 44 Crimson-spotted rainbowfish.................................................................................................................. 47 Ornate rainbowfish................................................................................................................................. 50 Olive perchlet ......................................................................................................................................... 53 Macquarie perch..................................................................................................................................... 56 Golden perch .......................................................................................................................................... 60 Eastern cod............................................................................................................................................. 63 Trout cod ................................................................................................................................................ 66 Murray cod ............................................................................................................................................. 72 Morris et al., 2001 WWF & Fisheries Action Program ii Contents Silver perch .............................................................................................................................................75 Welch’s grunter.......................................................................................................................................80 Spangled perch........................................................................................................................................82 Southern pygmy perch.............................................................................................................................85 Oxleyan pygmy perch..............................................................................................................................88 Two-spined blackfish...............................................................................................................................92 River blackfish.........................................................................................................................................95 Congolli...................................................................................................................................................98 Southern purple-spotted gudgeon .........................................................................................................100 5. SYNTHESIS FROM SPECIES CONSERVATION SYNOPSES........................................................103 5.1. CRITICAL HABITATS ............................................................................................................................103 5.2. KEY THREATENING PROCESSES...........................................................................................................104 5.3. DIVERSITY HOTSPOTS..........................................................................................................................105 6. RECOMMENDATIONS.........................................................................................................................106 6.1. SUGGESTED COMMUNITY PROJECTS AND RECOMMENDED ENGINEERING SOLUTIONS.........................106
Recommended publications
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Reintroduction Plan for the Purple- Spotted Gudgeon in the Southern Murray–Darling Basin
    Reintroduction plan for the Purple- spotted Gudgeon in the southern Murray–Darling Basin Photo: Arthur Mostead Authors - Michael Hammer, Thomas Barnes, Leanne Piller & Dylan Sortino Aquasave Consultants, Adelaide Published by Murray–Darling Basin Authority. MDBA Publication No 45/12 ISBN 978-1-922068-54-5 (online) © Murray–Darling Basin Authority for and on behalf of the Commonwealth of Australia, 2012. With the exception of the Commonwealth Coat of Arms, the MDBA logo, all photographs, graphics and trademarks, this publication is provided under a Creative Commons Attribution 3.0 Australia Licence. http://creativecommons.org/licenses/by/3.0/au The MDBA’s preference is that you attribute this publication (and any material sourced from it) using the following wording: Title: Reintroduction Plan for the Southern Purple-spotted Gudgeon in the southern Murray— Darling Basin Source: Licensed from the Murray–Darling Basin Authority, under a Creative Commons Attribution 3.0 Australia Licence. Authors: Michael Hammer, Thomas Barnes, Leanne Pillar and Dylan Sortino. Editor: Jane Tuckwell The MDBA provides this information in good faith but to the extent permitted by law, the MDBA and the Commonwealth exclude all liability for adverse consequences arising directly or indirectly from using any information or material contained within this publication. Cover Image: Lower Murray Southern Purple-spotted Gudgeon in captivity–adults, eggs and juveniles. Photos by Michael Hammer i Reintroduction plan for the Southern Purple-spotted Gudgeon in the southern Murray—Darling Basin. Summary The Southern Purple-spotted Gudgeon is a small, colourful freshwater fish with a distinct genetic conservation unit in the southern Murray–Darling Basin (MDB).
    [Show full text]
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research Jonathan J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff ubP lications Unit 2015 The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research Jonathan J. Spurgeon University of Nebraska–Lincoln, [email protected] Martin J. Hamel University of Nebraska-Lincoln, [email protected] Kevin L. Pope U.S. Geological Survey—Nebraska Cooperative Fish and Wildlife Research Unit,, [email protected] Mark A. Pegg University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Spurgeon, Jonathan J.; Hamel, Martin J.; Pope, Kevin L.; and Pegg, Mark A., "The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research" (2015). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 203. http://digitalcommons.unl.edu/ncfwrustaff/203 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reviews in Fisheries Science & Aquaculture, 23:329–345, 2015 CopyrightO c Taylor & Francis Group, LLC ISSN: 2330-8249 print / 2330-8257 online DOI: 10.1080/23308249.2015.1068737 The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research JONATHAN J.
    [Show full text]
  • 2219573-REP-Marine Assessment Report AR
    Appendix L – Marine Assessment GHD | Report for Hunter Water Corporation - Belmont Drought Response Desalination Plant, 2219573 Hunter Water Corporation Belmont Drought Response Desalination Plant Marine Environment Assessment Amendment Report July 2020 Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 Purpose and structure of this report .................................................................................... 2 2. Project changes ............................................................................................................................. 4 2.1 Overview .............................................................................................................................. 4 2.2 Key features of the amended Project .................................................................................. 4 3. Methodology ................................................................................................................................... 7 3.1 Review of relevant legislation .............................................................................................. 7 3.2 Review of databases and searches ..................................................................................... 7 3.3 Review of previous marine ecology reports ........................................................................
    [Show full text]
  • Weak but Parallel Divergence Between Ko¯Aro (Galaxias Brevipinnis) from Adjacent Lake and Stream Habitats
    Evolutionary Ecology Research, 2018, 19: 29–41 Weak but parallel divergence between ko¯aro (Galaxias brevipinnis) from adjacent lake and stream habitats Travis Ingram1 and Stephanie M. Bennington2 1Department of Zoology, University of Otago, Dunedin, New Zealand and 2Department of Marine Science, University of Otago, Dunedin, New Zealand ABSTRACT Background: Fish in New Zealand and elsewhere in the temperate Southern Hemisphere rarely show the adaptive divergence in sympatry or parapatry seen elsewhere in the world. Hypothesis: Galaxiid fish in high-elevation lakes will show parallel morphological shifts across six lake–stream ecotones, possibly accompanied by genetic divergence. Organism: Ko¯aro, the climbing galaxias, which is often the sole fish species in New Zealand lakes that lack introduced trout. Methods: Geometric morphometric analyses of photos taken of live fish collected from lakes and streams to measure the extent and direction of body shape divergence; microsatellite genotyping to measure genetic differentiation. Results: Ko¯aro show weak or no genetic differentiation between adjacent lake and stream habitats, but do show generally parallel shifts in body shape between lakes and streams. Keywords: diadromy, Galaxias brevipinnis, parapatric speciation, phenotypic change vector analysis, phenotypic plasticity. INTRODUCTION New species frequently originate as the result of populations adapting to occupy distinct ecological niches (Schluter, 2001; Nosil, 2012). Comparisons of populations occurring across sharp habitat transitions
    [Show full text]
  • SALINITY SENSITIVITY in EARLY LIFE STAGES of an AUSTRALIAN FRESHWATER FISH, MURRAY COD (Maccullochella Peelii Peelii Mitchell 1838)
    i SALINITY SENSITIVITY IN EARLY LIFE STAGES OF AN AUSTRALIAN FRESHWATER FISH, MURRAY COD (Maccullochella peelii peelii Mitchell 1838) Piyapong Chotipuntu THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF CANBERRA Submitted August 2003 ii © Piyapong Chotipuntu 2003 Abstract The Murray cod (Maccullochella peelii peelii Mitchell 1838) is Australia’s largest freshwater fish. Once highly abundant in the Murray-Darling river system, populations have drastically declined in recent decades. Many causes for this decline have been proposed, including over-fishing, habitat loss and altered river flow regimes. This study hypothesised that elevated salinities have led to selective mortality in some developmental stages, which have in turn depleted stock recruitment and adult populations. The objectives of this study were to determine the optimal, threshold, upper sublethal and lethal salinities for development of eggs, yolk-sac larvae, fry and fingerlings of M. peelii peelii. Investigation the impact of salinity on fertilisation utilised gametes of trout cod (M. macquariensis, Cuvier 1829) instead of M. peelii peelii. Studies were carried out in a controlled laboratory environment using test media prepared from commercial sea salt. The results showed that the eggs of the trout cod hatched only when fertilised and incubated in freshwater, and only larvae hatched in freshwater survived through the yolk absorption period of 12 days. Yolk utilisation efficiencies were not significantly different among the salinities of 0-0.30 g/L. There was no effect of pre- or post- fertilising processes on the salinity tolerances of yolk-sac larvae. No larvae survived at salinities higher than 0.30 g/L during the yolk utilisation period.
    [Show full text]
  • Incidences of Caudal Fin Malformation in Fishes from Jubail City, Saudi Arabia, Arabian Gulf
    FISHERIES & AQUATIC LIFE (2018) 26: 65-71 Archives of Polish Fisheries DOI 10.2478/aopf-2018-0008 RESEARCH ARTICLE Incidences of caudal fin malformation in fishes from Jubail City, Saudi Arabia, Arabian Gulf Laith A. Jawad, Mustafa Ibrahim, Baradi Waryani Received – 18 August 2017/Accepted – 09 March 2018. Published online: 31 March 2018; ©Inland Fisheries Institute in Olsztyn, Poland Citation: Jawad L.A., Ibrahim M., Waryani B. 2018 – Incidences of caudal fin malformation in fishes from Jubail City, Saudi Arabia, Ara- bian Gulf – Fish. Aquat. Life 26: 65-71. Abstract. These case studies endeavor to report incidences Introduction of caudal fin deformities in several commercial fishes living in natural populations in the Saudi Arabian coastal waters of Aberrations in fish bodies have attracted the attention the Arabian Gulf. Two groups of anomalies were observed, slight and severe. The carangid species, Parastromateus of researchers since the sixteenth century (Gudger niger (Bloch) and the soleid species, Euryglossa orientalis 1936), and since then a large number of studies have (Bloch & Schneider), had slight cases of caudal fin documented the presence of various types of anoma- abnormalities, while the species Oreochrromis mossambicus lies in wild fishes (Boglione et al. 2006, Jawad and (Peters), Epinephelus stoliczkae (Day), Diagramma pictum Hosie 2007, Jawad and _ktoner 2007, (Thunberg), Cephalopholis hemistiktos (Rüppell), Lethrinus Koumoundouros 2008, Orlov 2011, Jawad and nebulosus (ForsskDl), and Lutjanus sanguineus (Cuvier) had severe deformities. The abnormalities were assessed by Al-Mamry 2012, Rutkayová et al. 2016, Jawad et al. morphological diagnosis. None of the cases was fatal as they 2016). Fin anomalies are generally extremely well occurred in adult individuals.
    [Show full text]
  • AFSS 2014 Abstract Booklet
    Oral abstracts Oral abstracts The evolution of ASFB – reflections on 35 years of membership Seeing with sound – the behaviour and movements of fish in estuaries 1 2 1 2 01 Martin Gomon1 04 Alistair Becker , Iain M Suthers , Alan K Whitfield 1. Museum Victoria, Melbourne, VIC, Australia 1. University of New South Wales, Sydney, NSW, Australia 2. South African Institute for Aquatic Biodiversity, Grahamstown, South Africa The Australian Society for Fish Biology had as its inception early meetings organised by the ichthyological staff of the Australian Museum and New South Fisheries intended as a mechanism for sharing advances in fish related science and the development of Underwater video techniques have progressed rapidly over the past ten years, and are now used in a diverse range of habitats initiatives leading to the better understanding of the diversity and biology of Australia’s ichthyofauna. Although the enthusiasm from small creeks to the ocean depths. A limitation of underwater video cameras is they rely on high levels of water clarity and and casual nature of this now incorporated body has remained, the various focuses of the Society and its annual conferences have require artificial lighting if used in low light conditions. In systems such as estuaries, turbidity levels often restrict the use of changed over the decades in line with the evolving directions of the institutions and authorities charged with addressing fish conventional video. Acoustic cameras (DIDSON) overcome this problem as they rely on sound to produce near video, flowing studies and management, as well as the transient influences of the many characters that have been the Society’s driving force.
    [Show full text]
  • ACT, Australian Capital Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • With an Example from Australian Freshwater Fishes (Hypseleotris)
    This is the author’s version of a work that was accepted for publication: Page, T., Sternberg, D., Adams, M., Balcombe, S., Cook, B., Hammer, M., ... UNMACK, P. (2017). Accurate systematic frameworks are vital to advance ecological and evolutionary studies; with an example from Australian freshwater fishes (Hypseleotris). Marine Freshwater Research, 68, 1199-1207. https://doi.org/10.1071/MF16294 This file was downloaded from: https://researchprofiles.canberra.edu.au/en/publications/accurate-systematic- frameworks-are-vital-to-advance-ecological-an ©2016 Notice: This is the authors’ peer reviewed version of a work that was accepted for publication in the Marine and Freshwater Research, which has been published at https://doi.org/10.1071/MF16294. Changes resulting from the publishing process may not be reflected in this document. Accurate systematic frameworks are vital to advance ecological and evolutionary studies; with an example from Australian freshwater fishes (Hypseleotris) Timothy J. PageA,B,H, David SternbergA, Mark AdamsC,D, Stephen R. BalcombeA, Benjamin D. CookA,E, Michael P. HammerC,F, Jane M. HughesA, Ryan J. WoodsA,B and Peter J. UnmackG AAustralian Rivers Institute, Griffith University, Nathan, Qld, 4111, Australia. BWater Planning Ecology, Dept. of Science, Information Technology and Innovation, Dutton Park, Qld, 4102, Australia. CEvolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, 5000, Australia. DSchool of Biological Sciences, The University of Adelaide, SA, 5005, Australia. EFRC Environmental, PO Box 2363, Wellington Point, Qld, 4160, Australia. FMuseum & Art Gallery of the Northern Territory, GPO Box 4646 Darwin, NT, 0801, Australia. GInstitute for Applied Ecology, University of Canberra, ACT, 2601, Australia.
    [Show full text]