Environmental Water Requirements for the Rubicon River

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Water Requirements for the Rubicon River Environmental Water Requirements for The Rubicon River Tom Krasnicki Aquatic Ecologist Water Assessment and Planning Branch Water Resources Division DPIWE. Report Series WRA 02/01 May, 2002. Table of Contents ACKNOWLEDGEMENTS i GLOSSARY OF TERMS ii EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 2. THE RUBICON RIVER 3 2.1 General Description 4 2.1.1 Catchment and Drainage System 3 2.1.2 Geomorphology and Geology 6 2.1.3 Climate and Rainfall 7 2.1.4 Vegetation 8 2.1.5 Land Use and Degradation 9 2.1.6 Port Sorell Estuary 9 2.1.7 Hydrology 11 2.2. Site Selection 13 2.2.1 The Rubicon River at Smith and Others Rd. 13 3. VALUES 15 3.1 Community Values 15 3.2 State Technical Values 17 3.3 Endangered species 18 3.4 Values Assessed 19 4. METHODOLOGY 20 4.1 Physical Habitat Data 20 4.2 Biological Data 21 4.2.1 Invertebrates 21 4.2.2 Fish 21 4.3 Hydraulic Simulation 21 4.4 Risk Analysis 22 5. RESULTS 24 5.1 Physical Habitat Data 24 5.2 Biological Data 25 5.3 Risk Analysis 26 6. DISCUSSION 29 6.1 Vertebrate Fauna 30 6.1.1 Mordacia mordax and Geotria australis 30 6.1.2 Gadopsis marmoratus 30 6.1.3 Pseudaphritis urvillii 31 6.1.4 Galaxias truttaceus and Galaxias maculatus 31 6.1.5 Galaxias brevipinnis and Neochanna cleaveri 31 6.1.6 Prototroctes maraena 32 6.1.7 Lovettia sealii and Retropinna tasmanica 32 6.1.8 Anguilla australis 32 6.1.9 Salmo trutta 32 6.1.10 Nannoperca australis and Perca fluviatilis 33 6.2 Invertebrate Fauna 33 6.2.1 Astacopsis gouldi 33 6.3 Flow Recommendations 34 6.3.1 Rubicon River at Smith and Others Rd. 35 7. REFERENCES 36 APPENDIX 1. WUA GRAPHS FOR THE RUBICON RIVER 40 Front cover: Rubicon River Photo: Mic Clayton Acknowledgments This study has been conducted under the Natural Heritage Trust as part of the project "Tasmanian Environmental Flows" (NRC13182) and has received funding from the Commonwealth Government and the Department of Primary Industries, Water and Environment. The author would like to thank the following individuals from the DPIWE for their assistance in field data collection and for assistance in preparation of this report: Cameron Amos, John Gooderham, Adam Jagla, David Horner, Mark Nelson, Rebecca Pinto, Nick Probert, Martin Read, Bryce Graham and Ian Tye. The author would also like to acknowledge the support received from landowners and stakeholders within the Rubicon River catchment and the assistance of Jo Bentley of the Greater Rubicon Catchment Management Group. Copyright Notice: Material contained in the report provided is subject to Australian copyright law. Other than in accordance with the Copyright Act 1968 of the Commonwealth Parliament, no part of this report may, in any form or by any means, be reproduced, transmitted or used. This report cannot be redistributed for any commercial purpose whatsoever, or distributed to a third party for such purpose, without prior written permission being sought from the Department of Primary Industries, Water and Environment, on behalf of the Crown in Right of the State of Tasmania. Disclaimer: Whilst DPIWE has made every attempt to ensure the accuracy and reliability of the information and data provided, it is the responsibility of the data user to make their own decisions about the accuracy, currency, reliability and correctness of information provided. The Department of Primary Industries, Water and Environment, its employees and agents, and the Crown in the Right of the State of Tasmania do not accept any liability for any damage caused by, or economic loss arising from, reliance on this information. Preferred Citation Krasnicki, T. J. (2002). Environmental Water Requirements for the Rubicon River . Department of Primary Industries, Water and Environment, Hobart Technical Report No. WRA 02/01 ISSN: 1448-1626 The Department of Primary Industries, Water and Environment The Department of Primary Industries, Water and Environment provides leadership in the sustainable management and development of Tasmania’s resources. The Mission of the Department is to advance Tasmania’s prosperity through the sustainable development of our natural resources and the conservation of our natural and cultural heritage for the future. The Water Resources Division provides a focus for water management and water development in Tasmania through a diverse range of functions including the design of policy and regulatory frameworks to ensure sustainable use of the surface water and groundwater resources; monitoring, assessment and reporting on the condition of the State’s freshwater resources; facilitation of infrastructure development projects to ensure the efficient and sustainable supply of water; and implementation of the Water Management Act 1999 , related legislation and the State Water Development Plan. i Glossary of Terms ARMCANZ Agriculture and Resource Management Council of Australia and New Zealand ANZECC Australian and New Zealand Environment and Conservation Council cumec a measure of flow discharge. 1 cubic meter per second; equivalent to 86.4 ML/day Commissional Water Under the Water Act 1957, the right to take water from a water resource Right (C.W.R.) (watercourse, lake, river, stream or any surface water or groundwater) for commercial (irrigation) use. discharge a volume of water passing a given point in unit time Water Provisions for Are that part of the Environmental Water Requirements that can be met. That is, the the Environment water regime for the environment through agreement or negotiation. (WPEs) Environmental Water Are descriptions of the water regimes needed to sustain ecological values of aquatic Requirements ecosystems at a low level of risk. These descriptions are developed through the (EWRs) application of scientific methods and techniques or through the application of local knowledge based on many years of observations. IFIM Instream Flow Incremental Methodology macrophytes large aquatic plant macroinvertebrates invertebrate (without a backbone) animals which can be seen with the naked eye. megalitre a measure of water equivalent to 1000 000 litres (or about the size of an Olympic swimming pool) pools deep, still water , usually within the main river channel riffles areas of fast moving, broken water Riparian Right Under the Water Management Act 1999 a person who owns land or occupies a property may take water from a watercourse or lake on, or adjoining, that land for the purposes of domestic use, or irrigation of a household garden, or stock watering, or firefighting, or drilling. riparian vegetation vegetation on the banks of streams and rivers run unbroken, moving water sinuosity degree of “bendiness” of a river (ratio of valley length: river length) snags instream woody debris substrate the structural elements of the river bed; boulder, cobble etc. taxon (plural: taxa) the member of any particular taxonomic group eg. a particular species, family etc. transect in this study, a line across the river bed perpendicular to flow, used for a standardised collection of depth, velocity and substrate information WL Water licence – Under the Water Management Act 1999 water licences are issued for the purpose of taking water from a water resource (watercourse, lake, river, stream or any surface water or groundwater). The amount of water taken depends upon the water allocation under the issued licence. The Department of Primary Industry, Water and the Environment allocates water for irrigation, stock and domestic, aesthetic, commercial and industrial purposes. WUA Weighted Useable Area, or the amount of useable habitat available in the river for a species ii Executive Summary This report details the ecological assessment of minimum flow requirements for the Rubicon River. Both community values and State technical values were identified as part of the assessment process and the ecological values identified from this process were used to focus the assessment of Environmental Water Requirements. Ecological values specifically targeted included: • Maintain habitat for common jollytail ( Galaxias maculatus ), blackfish ( Gadopsis marmoratus ) and short finned eel ( Anguilla australis ) populations; • Maintain in-stream habitat for macroinvertebrate populations. Recreational values targeted were: • Maintain fish stocks of brown trout ( Salmo trutta ). • Maintain rearing and/or spawning habitat for brown trout. A risk analysis was performed to provide (1) a series of options for negotiation of Water Provisions for the Environment and (2) the ecological risk of failure in not achieving these flows for each of these values. This was achieved by determining the flows at which certain percentages of habitat loss occurred for individual species, relative to the habitat available at a pre-determined reference condition. The percentage changes in habitat that determined risk categories were taken from Davies and Humphries (1996). This analysis was done for each of the key biota (including both fish and invertebrate species). Other values identified, and discussed elsewhere in the report include: . • Protect whitebait and native fish populations. • Maintain suitable flows for the protection of the Australian grayling ( Prototroctes maraena ) and the giant freshwater crayfish ( Astacopsis gouldi) , • Maintain fish stocks, including Australian grayling ( Prototroctes maraena ), freshwater flathead ( Pseudaphritis urvillii ), spotted galaxias ( Galaxias truttaceus ), climbing galaxias (Galaxias brevipinnis ), common jollytail ( Galaxias maculatus ), Tasmanian mudfish (Neochanna cleaveri ) Tasmanian whitebait ( Lovettia sealii ), Smelt ( Retropinna tasmanica ), river
Recommended publications
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • Cape York Peninsula Marine Water Quality Synthesis
    Cape York Peninsula Marine Water Quality Synthesis Technical Report for the CYP Water Quality Improvement Plan November 2015 0 Cover Photos: Coral assemblage (top left) and Crown of Thorns starfish (top right) at Little Unchartered Reef (Christina Howley). Bottom: Flood plume waters at Princess Charlotte Bay, approximately 14km offshore (north) from the Kennedy River mouth (Jeff Shellberg, 29/1/2013). Produced by Christina Howley (Howley Environmental Consulting) for South Cape York Catchments and Cape York NRM. This report was produced under contract to South Cape York Catchments (SCYC) with funding from the Australian Government for the Cape York Water Quality Improvement Plan. The scope of the report, as identified by SCYC and the WQIP Science Advisory Panel, was to synthesize the available water quality data from eastern CYP and to provide a comparison of the data from the northern, central and southern CYP regions and the GBR water quality guidelines. While every effort has been made to ensure that the contents of this publication are factually correct, the author does not accept responsibility for the accuracy or completeness of the contents. This publication is copyrighted and protected by the Australian Copyright Act 1968. All rights reserved. No part of this document may be used without the prior written permission of C. Howley and South Cape York Catchments. 1 EXECUTIVE SUMMARY The Cape York Peninsula (CYP) marine environment (far northern Great Barrier Reef) is considered to be in good condition compared to other parts of the Great Barrier Reef (GBR) or global coral reef ecosystems. This is attributed to a combination of factors, including good water quality due to lower levels of development within CYP catchments, as well as less pressure from recreational and commercial fishers, tourism and other boats.
    [Show full text]
  • Victorian Recreational Fishing Guide 2021
    FREE TARGET ONE MILLION ONE MILLION VICTORIANS FISHING #target1million VICTORIAN RECREATIONAL FISHING A GUIDE TO FISHING RULES AND PRACTICES 2021 GUIDE 2 Introduction 55 Waters with varying bag and size limits 2 (trout and salmon) 4 Message from the Minister 56 Trout and salmon regulations 5 About this guide 60 Year-round trout and salmon fisheries 6 Target One Million 61 Trout and salmon family fishing lakes 9 Marine and estuarine fishing 63 Spiny crays 10 Marine and estuarine scale fish 66 Yabbies 20 Sharks, skates and rays 68 Freshwater shrimp and mussels 23 Crabs INTRODUCTION 69 Freshwater fishing restrictions 24 Shrimps and prawns 70 Freshwater fishing equipment 26 Rock lobster 70 Using equipment in inland waters 30 Shellfish 74 Illegal fishing equipment 33 Squid, octopus and cuttlefish 74 Bait and berley 34 Molluscs 76 Recreational fishing licence 34 Other invertebrates 76 Licence information 35 Marine fishing equipment 78 Your fishing licence fees at work 36 Using equipment in marine waters 82 Recreational harvest food safety 40 Illegal fishing equipment 82 Food safety 40 Bait and berley 84 Responsible fishing behaviours 41 Waters closed to recreational fishing 85 Fishing definitions 41 Marine waters closed to recreational fishing 86 Recreational fishing water definitions 41 Aquaculture fisheries reserves 86 Water definitions 42 Victoria’s marine national parks 88 Regulation enforcement and sanctuaries 88 Fisheries officers 42 Boundary markers 89 Reporting illegal fishing 43 Restricted areas 89 Rule reminders 44 Intertidal zone
    [Show full text]
  • IMPACTS of the UNPRECEDENTED 2019-20 BUSHFIRES on AUSTRALIAN ANIMALS NOVEMBER 2020 Acknowledgements
    AUSTRALIA IMPACTS OF THE UNPRECEDENTED 2019-20 BUSHFIRES ON AUSTRALIAN ANIMALS NOVEMBER 2020 Acknowledgements WWF-Australia acknowledges the Traditional Owners of the land on which we work and their continuing connection to their lands, waters, and culture. We pay our respects to Elders – past and present, and their emerging leaders. WWF-Australia is part of the world’s largest conservation network. WWF-Australia has been working to create a world where people live in harmony with nature since 1978. WWF’s mission is to stop the degradation of the Earth’s CONTENTS natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the EXECUTIVE SUMMARY 6 reduction of pollution and wasteful consumption. Prepared by Lily M van Eeden, Dale Nimmo, Michael BACKGROUND 10 Mahony, Kerryn Herman, Glenn Ehmke, Joris Driessen, James O’Connor, Gilad Bino, Martin Taylor and Chris 1.1 Fire in Australia 10 Dickman for WWF-Australia 1.2 The 2019-20 bushfire season 10 We are grateful to the researchers who provided data or feedback on the report. These include: 1.3 Scope of this study 12 • Eddy Cannella 1.3.1 Taxa included 14 • David Chapple 1.3.2 Study area 14 • Hugh Davies • Deanna Duffy 1.4 Limitations 17 • Hugh Ford • Chris Johnson 1. MAMMALS 18 • Brad Law 2.1 Methods 18 • Sarah Legge • David Lindenmayer 2.1.1 Most mammals 18 • Simon McDonald 2.1.2 Koalas 19 • Damian Michael 2.2 Results 22 • Harry Moore • Stewart Nichol 2.3 Caveats 22 • Alyson Stobo-Wilson • Reid Tingley 2.
    [Show full text]
  • Weak but Parallel Divergence Between Ko¯Aro (Galaxias Brevipinnis) from Adjacent Lake and Stream Habitats
    Evolutionary Ecology Research, 2018, 19: 29–41 Weak but parallel divergence between ko¯aro (Galaxias brevipinnis) from adjacent lake and stream habitats Travis Ingram1 and Stephanie M. Bennington2 1Department of Zoology, University of Otago, Dunedin, New Zealand and 2Department of Marine Science, University of Otago, Dunedin, New Zealand ABSTRACT Background: Fish in New Zealand and elsewhere in the temperate Southern Hemisphere rarely show the adaptive divergence in sympatry or parapatry seen elsewhere in the world. Hypothesis: Galaxiid fish in high-elevation lakes will show parallel morphological shifts across six lake–stream ecotones, possibly accompanied by genetic divergence. Organism: Ko¯aro, the climbing galaxias, which is often the sole fish species in New Zealand lakes that lack introduced trout. Methods: Geometric morphometric analyses of photos taken of live fish collected from lakes and streams to measure the extent and direction of body shape divergence; microsatellite genotyping to measure genetic differentiation. Results: Ko¯aro show weak or no genetic differentiation between adjacent lake and stream habitats, but do show generally parallel shifts in body shape between lakes and streams. Keywords: diadromy, Galaxias brevipinnis, parapatric speciation, phenotypic change vector analysis, phenotypic plasticity. INTRODUCTION New species frequently originate as the result of populations adapting to occupy distinct ecological niches (Schluter, 2001; Nosil, 2012). Comparisons of populations occurring across sharp habitat transitions
    [Show full text]
  • Spatial Patterns of Ne Sediment Supply and Transfer in the River Esk, North
    Durham E-Theses Spatial patterns of ne sediment supply and transfer in the River Esk, North York Moors. Robinson, Katherine S. How to cite: Robinson, Katherine S. (2006) Spatial patterns of ne sediment supply and transfer in the River Esk, North York Moors., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2784/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Spatial patterns of fine sediment supply and transfer in the River Esk, North York Moors. The copyright of this thesis rests with the author or the university to which it was submitted. No quotation from it, or information derived from it may be published without the prior written consent of the author or university, and any information derived from it should be acknowledged. MSc (by Research) Katherine. S. Robinson Department of Geography Durham University September 2006 11 JUN 2007 Declaration This thesis is the result of my own work.
    [Show full text]
  • 3966 Tour Op 4Col
    The Tasmanian Advantage natural and cultural features of Tasmania a resource manual aimed at developing knowledge and interpretive skills specific to Tasmania Contents 1 INTRODUCTION The aim of the manual Notesheets & how to use them Interpretation tips & useful references Minimal impact tourism 2 TASMANIA IN BRIEF Location Size Climate Population National parks Tasmania’s Wilderness World Heritage Area (WHA) Marine reserves Regional Forest Agreement (RFA) 4 INTERPRETATION AND TIPS Background What is interpretation? What is the aim of your operation? Principles of interpretation Planning to interpret Conducting your tour Research your content Manage the potential risks Evaluate your tour Commercial operators information 5 NATURAL ADVANTAGE Antarctic connection Geodiversity Marine environment Plant communities Threatened fauna species Mammals Birds Reptiles Freshwater fishes Invertebrates Fire Threats 6 HERITAGE Tasmanian Aboriginal heritage European history Convicts Whaling Pining Mining Coastal fishing Inland fishing History of the parks service History of forestry History of hydro electric power Gordon below Franklin dam controversy 6 WHAT AND WHERE: EAST & NORTHEAST National parks Reserved areas Great short walks Tasmanian trail Snippets of history What’s in a name? 7 WHAT AND WHERE: SOUTH & CENTRAL PLATEAU 8 WHAT AND WHERE: WEST & NORTHWEST 9 REFERENCES Useful references List of notesheets 10 NOTESHEETS: FAUNA Wildlife, Living with wildlife, Caring for nature, Threatened species, Threats 11 NOTESHEETS: PARKS & PLACES Parks & places,
    [Show full text]
  • Aquatic Ecology of the Montagu River Catchment
    Aquatic Ecology of the Montagu River Catchment A Report Forming Part of the Requirements for State of Rivers Reporting David Horner Water Assessment and Planning Branch Water Resources Division DPIWE. December, 2003 State of Rivers Aquatic Ecology of the Montagu Catchment Copyright Notice: Material contained in the report provided is subject to Australian copyright law. Other than in accordance with the Copyright Act 1968 of the Commonwealth Parliament, no part of this report may, in any form or by any means, be reproduced, transmitted or used. This report cannot be redistributed for any commercial purpose whatsoever, or distributed to a third party for such purpose, without prior written permission being sought from the Department of Primary Industries, Water and Environment, on behalf of the Crown in Right of the State of Tasmania. Disclaimer: Whilst DPIWE has made every attempt to ensure the accuracy and reliability of the information and data provided, it is the responsibility of the data user to make their own decisions about the accuracy, currency, reliability and correctness of information provided. The Department of Primary Industries, Water and Environment, its employees and agents, and the Crown in the Right of the State of Tasmania do not accept any liability for any damage caused by, or economic loss arising from, reliance on this information. Preferred Citation: DPIWE (2003). State of the River Report for the Montagu River Catchment. Water Assessment and Planning Branch, Department of Primary Industries, Water and Environment, Hobart. Technical Report No. WAP 03/09 ISSN: 1449-5996 The Department of Primary Industries, Water and Environment The Department of Primary Industries, Water and Environment provides leadership in the sustainable management and development of Tasmania’s resources.
    [Show full text]
  • Cape York Claims and Determinations
    142°E 143°E 144°E 145°E Keirri Island Maururra Island ROUND ISLAND THURSDAY ISLAND CONSERVATION PARK ! ! Kaurareg MURALUG Aboriginal Muri Aboriginal Kaiwalagal AC Horn Land Trust Cape Land Trust Hammond Island York Mori CAPE YORK CLAIMS AND DETERMINATIONS Island POSSESSION Island CAPE YORK PENINSULA LAND TENURE EDITION 35 ISLAND Prepared by the Department of Natural Resources and Mines Townsville, Queensland, 6 June 2017 NATIONAL Ulrica Point PARK " Major Road Cape Cornwall Chandogoo Point Legend Homesteads/Roadhouse Minor Road Cliffy Point !( Population Centres SEISIA! River Boundary of CYP Region as referred !NEW MAPOON to in the CYP Heritage Act 2007 UMAGICO! ! Reef ! BAMAGA INJINOO Turtle Head Island DUNBAR Pastoral Holding Name Nature Refuge & Conservation Areas Slade Point Sharp Point Cape York Claims Cape York Determinations y Ck ck Sadd Point 11°S Ja 11°S y Classes of Land Tenure Apudthama k c Furze Point a Land Trust J JARDINE LandN ATIONALreserved- PARK Under ConservationNathe ture FREEHOLDINGincludingLEASE PURCHASELEASE SPECIAL RIVER Naaas tionaNaAct Park, Conserva l tionaor Park(Scientific) l tion theirforTena pay pricepurchaFREEHOLD these to - elects nt Jardine River RESOURCES Park. leawhichfreeho se, toconverts ldoncom pletionofpayments. RESERVE DENHAM GROUP Ussher NATIONAL PARK creaover tedAbo - N rigina ATIONAL(CYPAL) PARKland. l Land admLANDS- LEASE inisteredexcludingunderLand the Act JARDINE RIVER Point Traditionaformaareowners l (represented llybylanda trust) MiningHom esteaTenem d Lea ent ses. Vrilya Point NATIONAL PARK recognisedownersas ofland,thearea the being ma na gedaas NunderConservaNathe ain perpetuity tiona ture (CYPAL) Park tion l PERPETUincludingLEASES AL GRAZINGHOMESTEAD Act. PERPETUNON-COMPETITIVE LEASE, AL LEASE, Orford Ness N ON-COMPETITIVECONVLEASE Ongo ERTED - inglea seho ld CONSERVATIONRESOU PARK, Land RCESRESERVE Reserved- oragricultural e.g.
    [Show full text]
  • Assessment of Juvenile Eel Resources in South Eastern Australia and Associated Development of Intensive Eel Farming for Local Production
    ASSESSMENT OF JUVENILE EEL RESOURCES IN SOUTH EASTERN AUSTRALIA AND ASSOCIATED DEVELOPMENT OF INTENSIVE EEL FARMING FOR LOCAL PRODUCTION G J. Gooley, L. J. McKinnon, B. A. Ingram, B. Larkin, R.O. Collins and S.S. de Silva. Final Report FRDC Project No 94/067 FI SHERIE S RESEARCH & DEVELOPMENT Natural Resources CORPOR ATIO N and Environment AGRICULTURE RESOURCES COIISERVAT/Otl ASSESSMENT OF JUVENILE EEL RESOURCES IN SOUTH-EASTERN AUSTRALIA AND ASSOCIATED DEVELOPMENT OF INTENSIVE EEL FARMING FOR LOCAL PRODUCTION G.J Gooley, L.J. McKinnon, B.A. Ingram, B.J. Larkin, R.O. Collins and S.S. De Silva Final Report FRDC Project No 94/067 ISBN 0731143787 Marine and Freshwater Resources Institute, 1999. Copies of this document are available from: Marine and Freshwater Resources Institute Private Bag 20 Alexandra. VIC. 3714. AUSTRALIA.. This publication may be of assistance to you but the State of Victoria and its officers do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for error, loss or other consequence which may arise from you relying on any information in this publication. 1 TABLE OF CONTENTS 1 TABLE OF CONTENTS...............................................................................................................................i 2 ACKNOWLEDGMENTS.......................................................................................................................... iii 3 NON-TECHNICAL SUMMARY................................................................................................................!
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Introduction in Australian Inland Waters of Native Or Non-Native Fish That Are Outside Their Natural Geographic Distribution
    The Minister decided not to include this nomination in the list of key threatening processes on 11/11/2011 Advice to the Minister for Sustainability, Environment, Water, Population and Communities from the Threatened Species Scientific Committee (the Committee) on an Amendment to the List of Key Threatening Processes under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name and description of the key threatening process 1.1 Title of the process The introduction in Australian inland waters of native or non-native fish that are outside their natural geographic distribution. 1.2 Description of the process The introduction of non-native or native fish outside their natural ranges is one of the major conservation issues in inland aquatic environments. Regional differences in fish communities are decreasing as non-native species become established and native species decline and, in some cases, become locally extinct (Rahel, 2002). Worldwide, six areas have been identified as invasion ‘hotspots’, including southern Australia and New Zealand. In these hotspots, non-native fish represent more than a quarter of the total number of fish species (Leprieur et al., 2008). Approximately 8% of Australia’s freshwater fish species are threatened with extinction and 25% have significantly declined in distribution or occur in restricted areas (Wager and Jackson, 1993). In Australia, 43 non-native freshwater fish species occur in the wild and, of these, 34 have established populations (Koehn and McKenzie, 2004; Lintermans, 2004). One additional species, rosy barb (Puntius conchonius) is now established in northern and western Australia (Corfield et al., 2008). Five of the species established in Australia were nominated by the International Union for Conservation of Nature (IUCN) as among the world’s 100 most invasive species (Lowe et al., 2000).
    [Show full text]