Fundamentals of Imaging Lenses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 3 (Aberrations)
Chapter 3 Aberrations 3.1 Introduction In Chap. 2 we discussed the image-forming characteristics of optical systems, but we limited our consideration to an infinitesimal thread- like region about the optical axis called the paraxial region. In this chapter we will consider, in general terms, the behavior of lenses with finite apertures and fields of view. It has been pointed out that well- corrected optical systems behave nearly according to the rules of paraxial imagery given in Chap. 2. This is another way of stating that a lens without aberrations forms an image of the size and in the loca- tion given by the equations for the paraxial or first-order region. We shall measure the aberrations by the amount by which rays miss the paraxial image point. It can be seen that aberrations may be determined by calculating the location of the paraxial image of an object point and then tracing a large number of rays (by the exact trigonometrical ray-tracing equa- tions of Chap. 10) to determine the amounts by which the rays depart from the paraxial image point. Stated this baldly, the mathematical determination of the aberrations of a lens which covered any reason- able field at a real aperture would seem a formidable task, involving an almost infinite amount of labor. However, by classifying the various types of image faults and by understanding the behavior of each type, the work of determining the aberrations of a lens system can be sim- plified greatly, since only a few rays need be traced to evaluate each aberration; thus the problem assumes more manageable proportions. -
Camera System Considerations for Geomorphic Applications of Sfm Photogrammetry Adam R
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2017 Camera system considerations for geomorphic applications of SfM photogrammetry Adam R. Mosbrucker US Geological Survey, [email protected] Jon J. Major US Geological Survey Kurt R. Spicer US Geological Survey John Pitlick University of Colorado Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Mosbrucker, Adam R.; Major, Jon J.; Spicer, Kurt R.; and Pitlick, John, "Camera system considerations for geomorphic applications of SfM photogrammetry" (2017). USGS Staff -- Published Research. 1007. http://digitalcommons.unl.edu/usgsstaffpub/1007 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 42, 969–986 (2017) Published 2016. This article is a U.S. Government work and is in the public domain in the USA Published online 3 January 2017 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4066 Camera system considerations for geomorphic applications of SfM photogrammetry Adam R. Mosbrucker,1* Jon J. Major,1 Kurt R. Spicer1 and John Pitlick2 1 US Geological Survey, Vancouver, WA USA 2 Geography Department, University of Colorado, Boulder, CO USA Received 17 October 2014; Revised 11 October 2016; Accepted 12 October 2016 *Correspondence to: Adam R. -
Synopsis of Technical Report
Tzu-Yu Wu October 26, 2011 Opti 521 – Fall 2011 Introductory to opto-mechanical engineering Synopsis of Technical Report J.M. Sasian. ”Design, assembly, and testing of an objective lens for a free-space photonic switching system”, Optical Engineering 32(8), 1871-1878 (August 1993) 1. Introduction In this paper, the design, lens tolerancing, assembly and testing of a lens with a high numerical aperture over a small field of view are discussed. Although this object lens is specifically designed for a free-space photonic switching system, the concepts in aberration corrections and the approaches to reach a high NA within small field of view are applicable in many applications such as microscope objective lens, laser scan lenses. It also serves as a nice guide for a lens designer to understand the whole process of making a lens system which is not only limited to lens design but included tolerancing, lens ordering, the strategy to maintain the budget, assembly and testing details, and the approximate time required for each task. 2. Summary of the synopsis This synopsis mainly focuses on the general concepts in lens design of a fast objective lens with small field of view. It starts with a brief introduction on the lens requirement and lists the common aberration correction methods. Some explanations in aberration corrections are referenced from “Introduction to Lens Design with practical ZEMAX examples” by Joseph M Geary. Lens tolerancing, assembly and testing are included. Details in phonic switching system are neglected. Interested reader can refer the original paper for more details. 3. Lens requirement Lens requirements Focal length: 15mm Focal ratio: 1.5 Field of View: 7 degrees Wavelength: 850 nm Mapping: F-sin( ) ±1.0 Image surface: Flat Performance: Strehl휃 ratio> 0.95휇푚 over the full field Telecentricity: In the image space Lenses: Glass all spherical surfaces Page 1 of 5 4. -
United States Patent (19) 11 Patent Number: 5,838,480 Mcintyre Et Al
USOO583848OA United States Patent (19) 11 Patent Number: 5,838,480 McIntyre et al. (45) Date of Patent: Nov. 17, 1998 54) OPTICAL SCANNING SYSTEM WITH D. Stephenson, “Diffractive Optical Elements Simplify DIFFRACTIVE OPTICS Scanning Systems”, Laser Focus World, pp. 75-80, Jun. 1995. 75 Inventors: Kevin J. McIntyre, Rochester; G. Michael Morris, Fairport, both of N.Y. 73 Assignee: The University of Rochester, Primary Examiner James Phan Rochester, N.Y. Attorney, Agent, or Firm M. Lukacher; K. Lukacher 57 ABSTRACT 21 Appl. No.: 639,588 22 Filed: Apr. 29, 1996 An improved optical System having diffractive optic ele ments is provided for Scanning a beam. This optical System (51) Int. Cl. ............................................... GO2B 26/08 includes a laser Source for emitting a laser beam along a first 52 U.S. Cl. .......................... 359/205; 359/206; 359/207; path. A deflector, Such as a rotating polygonal mirror, 359/212; 359/216; 359/17 intersects the first path and translates the beam into a 58 Field of Search ..................................... 359/205-207, Scanning beam which moves along a Second path in a Scan 359/212-219, 17, 19,563, 568-570,900 plane. A lens System (F-0 lens) in the Second path has first 56) References Cited and Second elements for focusing the Scanning beam onto an image plane transverse to the Scan plane. The first and U.S. PATENT DOCUMENTS Second elements each have a cylindrical, non-toric lens. One 4,176,907 12/1979 Matsumoto et al. .................... 359/217 or both of the first and second elements also provide a 5,031,979 7/1991 Itabashi. -
Making Your Own Astronomical Camera by Susan Kern and Don Mccarthy
www.astrosociety.org/uitc No. 50 - Spring 2000 © 2000, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Making Your Own Astronomical Camera by Susan Kern and Don McCarthy An Education in Optics Dissect & Modify the Camera Loading the Film Turning the Camera Skyward Tracking the Sky Astronomy Camp for All Ages For More Information People are fascinated by the night sky. By patiently watching, one can observe many astronomical and atmospheric phenomena, yet the permanent recording of such phenomena usually belongs to serious amateur astronomers using moderately expensive, 35-mm cameras and to scientists using modern telescopic equipment. At the University of Arizona's Astronomy Camps, we dissect, modify, and reload disposed "One- Time Use" cameras to allow students to study engineering principles and to photograph the night sky. Elementary school students from Silverwood School in Washington state work with their modified One-Time Use cameras during Astronomy Camp. Photo courtesy of the authors. Today's disposable cameras are a marvel of technology, wonderfully suited to a variety of educational activities. Discarded plastic cameras are free from camera stores. Students from junior high through graduate school can benefit from analyzing the cameras' optics, mechanisms, electronics, light sources, manufacturing techniques, and economics. Some of these educational features were recently described by Gene Byrd and Mark Graham in their article in the Physics Teacher, "Camera and Telescope Free-for-All!" (1999, vol. 37, p. 547). Here we elaborate on the cameras' optical properties and show how to modify and reload one for astrophotography. An Education in Optics The "One-Time Use" cameras contain at least six interesting optical components. -
Characterisation Studies on the Optics of the Prototype Fluorescence Telescope FAMOUS
Characterisation studies on the optics of the prototype fluorescence telescope FAMOUS von Hans Michael Eichler Masterarbeit in Physik vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen im März 2014 angefertigt im III. Physikalischen Institut A bei Prof. Dr. Thomas Hebbeker Erstgutachter und Betreuer Zweitgutachter Prof. Dr. Thomas Hebbeker Prof. Dr. Christopher Wiebusch III. Physikalisches Institut A III. Physikalisches Institut B RWTH Aachen University RWTH Aachen University Abstract In this thesis, the Fresnel lens of the prototype fluorescence telescope FAMOUS, which is built at the III. Physikalisches Institut of the RWTH Aachen, is characterised. Due to the usage of silicon photomultipliers as active detector component, an adequate optical performance is required. The optical performance and transmittance of the used Fresnel lens and the qualification for the operation in the fluorescence telescope FAMOUS is examined in several series of measurements and simulations. Zusammenfassung In dieser Arbeit wird die Fresnel-Linse des Prototyp-Fluoreszenz-Teleskops FAMOUS charakterisiert, welches am III. Physikalischen Institut der RWTH Aachen gebaut wird. Durch die Verwendung von Silizium-Photomultipliern als aktive Detektorkomponente werden besondere Anforderungen an die Optik des Teleskops gestellt. In verschiedenen Messreihen und Simulationen wird untersucht, ob die Abbildungsqualität und die Transmission der verwendeten Fresnel-Linse für die Verwendung in diesem Fluoreszenz- Teleskop geeignet ist. Contents 1. Introduction 1 2. Cosmic rays 3 2.1 Energy spectrum . 4 2.2 Sources of cosmic rays . 6 2.3 Extensive air showers . 7 3. Fluorescence light detection 11 3.1 Fluorescence yield . 11 3.2 The Pierre Auger fluorescence detector . 14 3.3 FAMOUS . -
High-Quality Computational Imaging Through Simple Lenses
High-Quality Computational Imaging Through Simple Lenses Felix Heide1, Mushfiqur Rouf1, Matthias B. Hullin1, Bjorn¨ Labitzke2, Wolfgang Heidrich1, Andreas Kolb2 1University of British Columbia, 2University of Siegen Fig. 1. Our system reliably estimates point spread functions of a given optical system, enabling the capture of high-quality imagery through poorly performing lenses. From left to right: Camera with our lens system containing only a single glass element (the plano-convex lens lying next to the camera in the left image), unprocessed input image, deblurred result. Modern imaging optics are highly complex systems consisting of up to two pound lens made from two glass types of different dispersion, i.e., dozen individual optical elements. This complexity is required in order to their refractive indices depend on the wavelength of light differ- compensate for the geometric and chromatic aberrations of a single lens, ently. The result is a lens that is (in the first order) compensated including geometric distortion, field curvature, wavelength-dependent blur, for chromatic aberration, but still suffers from the other artifacts and color fringing. mentioned above. In this paper, we propose a set of computational photography tech- Despite their better geometric imaging properties, modern lens niques that remove these artifacts, and thus allow for post-capture cor- designs are not without disadvantages, including a significant im- rection of images captured through uncompensated, simple optics which pact on the cost and weight of camera objectives, as well as in- are lighter and significantly less expensive. Specifically, we estimate per- creased lens flare. channel, spatially-varying point spread functions, and perform non-blind In this paper, we propose an alternative approach to high-quality deconvolution with a novel cross-channel term that is designed to specifi- photography: instead of ever more complex optics, we propose cally eliminate color fringing. -
Glossary of Lens Terms
GLOSSARY OF LENS TERMS The following three pages briefly define the optical terms used most frequently in the preceding Lens Theory Section, and throughout this catalog. These definitions are limited to the context in which the terms are used in this catalog. Aberration: A defect in the image forming capability of a Convex: A solid curved surface similar to the outside lens or optical system. surface of a sphere. Achromatic: Free of aberrations relating to color or Crown Glass: A type of optical glass with relatively low Lenses wavelength. refractive index and dispersion. Airy Pattern: The diffraction pattern formed by a perfect Diffraction: Deviation of the direction of propagation of a lens with a circular aperture, imaging a point source. The radiation, determined by the wave nature of radiation, and diameter of the pattern to the first minimum = 2.44 λ f/D occurring when the radiation passes the edge of an Where: obstacle. λ = Wavelength Diffraction Limited Lens: A lens with negligible residual f = Lens focal length aberrations. D = Aperture diameter Dispersion: (1) The variation in the refractive index of a This central part of the pattern is sometimes called the Airy medium as a function of wavelength. (2) The property of an Filters Disc. optical system which causes the separation of the Annulus: The figure bounded by and containing the area monochromatic components of radiation. between two concentric circles. Distortion: An off-axis lens aberration that changes the Aperture: An opening in an optical system that limits the geometric shape of the image due to a variation of focal amount of light passing through the system. -
Zemax, LLC Getting Started with Opticstudio 15
Zemax, LLC Getting Started With OpticStudio 15 May 2015 www.zemax.com [email protected] [email protected] Contents Contents 3 Getting Started With OpticStudio™ 7 Congratulations on your purchase of Zemax OpticStudio! ....................................... 7 Important notice ......................................................................................................................... 8 Installation .................................................................................................................................... 9 License Codes ........................................................................................................................... 10 Network Keys and Clients .................................................................................................... 11 Troubleshooting ...................................................................................................................... 11 Customizing Your Installation ............................................................................................ 12 Navigating the OpticStudio Interface 13 System Explorer ....................................................................................................................... 16 File Tab ........................................................................................................................................ 17 Setup Tab ................................................................................................................................... 18 Analyze -
Schneider-Kreuznach Erweitert Seine F-Mount-Objektiv-Familie
FAQ Century Film & Video 1. What is Angle of View? 2. What is an Achromat Diopter? 3. How is an Achromat different from a standard close up lens? 4. What is a matte box? 5. What is a lens shade? 6. When do you need a lens shade or a matte box? 7. What is aspect ratio? 8. What is 4:3? 9. What is 16:9? 10. What is anamorphic video? 11. What is the difference between the Mark I and Mark II fisheye lenses? 12. What is anti-reflection coating? 13. How should I clean my lens? 14. Why should I use a bayonet Mount? 15. How much does my accessory lens weigh? 16. What is hyperfocal distance? 17. What is the Hyperfocal distance of my lens? 18. What is a T-Stop? 19. What is a PL mount? 1. What is Angle of View? Angle of view is a measure of how much of the scene a lens can view. A fisheye lens can see as much as 180 degrees and a telephoto lens might see as narrow an angle as 5 degrees. It is important to distinguish horizontal angle of view from the vertical angle of view. 2. What is an Achromat Diopter? An achromat diopter is a highly corrected two element close up lens that provides extremely sharp images edge to edge without prismatic color effects. 3. How is an Achromat different from a standard close up lens? Standard close-up lenses, or diopters, are single element lenses that allow the camera lens to focus more closely on small objects. -
Topic 3: Operation of Simple Lens
V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Topic 3: Operation of Simple Lens Aim: Covers imaging of simple lens using Fresnel Diffraction, resolu- tion limits and basics of aberrations theory. Contents: 1. Phase and Pupil Functions of a lens 2. Image of Axial Point 3. Example of Round Lens 4. Diffraction limit of lens 5. Defocus 6. The Strehl Limit 7. Other Aberrations PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -1- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Ray Model Simple Ray Optics gives f Image Object u v Imaging properties of 1 1 1 + = u v f The focal length is given by 1 1 1 = (n − 1) + f R1 R2 For Infinite object Phase Shift Ray Optics gives Delta Fn f Lens introduces a path length difference, or PHASE SHIFT. PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -2- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Phase Function of a Lens δ1 δ2 h R2 R1 n P0 P ∆ 1 With NO lens, Phase Shift between , P0 ! P1 is 2p F = kD where k = l with lens in place, at distance h from optical, F = k0d1 + d2 +n(D − d1 − d2)1 Air Glass @ A which can be arranged to|giv{ze } | {z } F = knD − k(n − 1)(d1 + d2) where d1 and d2 depend on h, the ray height. -
Optical Systems for Laser Scanners1 to Provide Yet Another Perspective
2 OpticalSystemsforLaserScanners Stephen F. Sagan NeoOptics Lexington, Massachusetts, USA CONTENTS 2.1 Introduction .......................................................................................................................... 70 2.2 Laser Scanner Configurations ............................................................................................71 2.2.1 Objective Scanning..................................................................................................71 2.2.2 Post-objective Scanning ..........................................................................................72 2.2.3 Pre-objective Scanning............................................................................................72 2.3 Optical Design and Optimization: Overview .................................................................72 2.4 Optical Invariants ................................................................................................................ 74 2.4.1 The Diffraction Limit .............................................................................................. 76 2.4.2 Real Gaussian Beams .............................................................................................. 76 2.4.3 Truncation Ratio ....................................................................................................... 77 2.5 Performance Issues .............................................................................................................. 79 2.5.1 Image Irradiance ......................................................................................................79