Hpra Drug Safety 66Th Newsletter Edition

Total Page:16

File Type:pdf, Size:1020Kb

Hpra Drug Safety 66Th Newsletter Edition FEBRUARY 2015 HPRA DRUG SAFETY 66TH NEWSLETTER EDITION 3 Mycophenolate mofetil (CellCept) and 4 Direct Healthcare Professional In this Edition Mycophenolic acid (Myfortic) - New warnings Communications published on about the risks of hypogammaglobulinaemia the HPRA website since the last 1 Eligard (leuprorelin acetate depot injection) and bronchiectasis Drug Safety Newsletter - Risk of lack of efficacy due to incorrect reconstitution and administration process 4 Tecfidera (dimethyl fumarate) - Progressive Multifocal Leukoencephalopathy (PML) has 2 Beta interferons – Risk of thrombotic occurred in a patient with severe microangiopathy and nephrotic syndrome and prolonged lymphopenia Eligard (leuprorelin acetate depot injection) - Risk of lack of efficacy due to incorrect reconstitution and administration process Following identification of a signal and safe treatment of patients with It is available in six-monthly (45mg), of administration errors with Eligard prostate cancer. Lack of efficacy may three-monthly (22.5mg) and one- and concerns that such errors may occur due to incorrect reconstitution monthly (7.5mg) formulations. In impact on clinical efficacy, this issue of Eligard. the majority of patients, androgen was reviewed at EU level by the deprivation therapy (ADT) with Eligard Eligard is indicated for the treatment Pharmacovigilance Risk Assessment results in testosterone levels below the of hormone dependent advanced Committee (PRAC). A cumulative standard castration threshold (<50ng/ prostate cancer and for the treatment review of reported global cases dL; <1.7 nmol/L); and in most cases, of high risk localised and locally identified errors related to storage, patients reach testosterone levels advanced hormone dependent preparation and reconstitution of below <20ng/dL. prostate cancer in combination Eligard. Appropriate reconstitution with radiotherapy. Healthcare professionals are is a critical step in the administration reminded of the following: of the product to ensure the effective Advice to Healthcare Professionals • Appropriate reconstitution of • The storage conditions for the • A Direct Healthcare Professional Eligard is a critical step in the product have been updated and Communication (DHPC) was administration of the product. the product information reflecting circulated to relevant healthcare this update is available on the professionals in December 2014 • It is important that all staff HPRA website (www.hpra.ie). The and is available on the HPRA involved in the reconstitution and syringe will be modified to simplify website (www.hpra.ie). administration of Eligard are familiar reconstitution and administration. with and adhere to the instructions • All cases of incorrect storage, The modified syringe (the blue for appropriate methods of reconstitution and administration plunger rod design is changing) reconstitution and administration of Eligard should be reported to will be made available as soon as before using the product. the HPRA. possible. • Testosterone levels should be measured in suspected cases of maladministration of Eligard. • There have been global • Lack of clinical efficacy • Reconstitution Key Message reports of medication may occur due to instructions in section errors related to incorrect reconstitution 6.6 of the SmPC for * Further details on Eligard are storage, preparation and of Eligard. Eligard must be followed available at www.hpra.ie reconstitution of Eligard. exactly. Beta interferons - Risk of thrombotic microangiopathy and nephrotic syndrome Interferon beta-1a and interferon beta- In July 2014, a European review thrombocytopenic purpura or 1b are indicated for the treatment of of interferon beta products* and haemolytic uraemic syndrome. Cases relapsing multiple sclerosis* and in associated reports of thrombotic of nephrotic syndrome with different patients with a single demyelinating microangiopathy (TMA) and nephrotic underlying nephropathies have also event with an active inflammatory syndrome was concluded. Cases of been reported in association with these process. Interferon beta-1b products thrombotic microangiopathy (TMA), products. The review could not rule out may also be used in patients with including fatal cases, had been a causal association between interferon secondary progressive multiple reported during treatment of multiple beta products and TMA or nephrotic sclerosis with active disease evidenced sclerosis with interferon beta. Most syndrome. by relapses. TMA cases presented as thrombotic Advice to Healthcare Professionals Thrombotic microangiopathy Nephrotic Syndrome • TMA may develop several weeks to several years after • Nephrotic syndrome may develop several weeks to starting treatment with interferon beta. several years after starting treatment with interferon beta. • Be vigilant for signs and symptoms of TMA and manage it promptly in line with the advice below. • Be vigilant for the development of this condition and manage it promptly in line with the advice below. • Clinical features of TMA include thrombocytopenia, new onset hypertension, fever, impaired renal function • Renal function should be monitored periodically and and central nervous system symptoms (e.g. confusion early signs or symptoms of nephrotic syndrome (e.g. and paresis). oedema, proteinuria and impaired renal function, especially in high risk groups) should be noted. • If clinical features of TMA are observed, platelet levels, serum lactate dehydrogenase levels, renal function and • If nephrotic syndrome occurs, it should be treated red blood cell fragments on a blood film should be promptly and consideration should be given to performed. stopping treatment with interferon beta. • If TMA is diagnosed, prompt treatment (e.g. plasma The product information (Summary of Product exchange should be considered) is required and Characteristics (SmPC) and package leaflet (PL)) for all immediate discontinuation of interferon beta is interferon beta products has been updated and will be recommended. fully harmonised with information on TMA and nephrotic syndrome. Key Message • Cases of TMA including fatal • Cases of nephrotic syndrome with • Be vigilant for the development cases have been reported during different underlying nephropathies of these conditions and manage treatment of multiple sclerosis with have also been reported. them promptly if they occur. interferon beta products. • Both TMA and nephrotic • Most TMA cases presented as syndrome may develop several thrombotic thrombocytopenic weeks to several years after purpura or haemolytic uraemic starting treatment with interferon syndrome. beta. * The following interferon beta products are authorised for the treatment of multiple sclerosis. Further details available at www.hpra.ie: Avonex (interferon beta-1a), Rebif (interferon beta-1a), Betaferon (interferon beta-1b), Extavia (interferon beta-1b), Plegridy (peginterferon beta-1a). 2 HPRA Drug Safety Newsletter – February 2015 – Edition 66 Beta interferons - Risk of thrombotic microangiopathy Mycophenolate mofetil (CellCept) and Mycophenolic and nephrotic syndrome acid (Myfortic) - New warnings about the risks of hypogammaglobulinaemia and bronchiectasis The Pharmacovigilance Risk Assessment Committee The active pharmacological form of mycophenolate mofetil (PRAC) of the EMA concluded a review of case reports and is mycophenolic acid and therefore the warnings regarding published studies which showed that mycophenolate mofetil these risks applies to all products that contain mycophenolic in combination with other immunosuppressants can cause acid as their active ingredient such as CellCept and Myfortic. hypogammaglobulinaemia and bronchiectasis. Advice to Healthcare Professionals Hypogammaglobulinaemia Bronchiectasis • Hypogammaglobulinaemia associated with recurrent • There have been published reports of bronchiectasis infections has been reported in patients receiving in patients receiving mycophenolate mofetil in mycophenolate mofetil in combination with other combination with other immunosuppressants. immunosuppressants. • Patients who develop persistent pulmonary symptoms, • Patients who develop recurrent infections should have such as cough and dyspnoea, should be investigated their serum immunoglobulins measured. promptly. • In cases of sustained, clinically relevant • In some of the confirmed cases of bronchiectasis, hypogammaglobulinaemia, appropriate clinical action switching mycophenolate mofetil to an alternative should be considered. In some of the reported cases, immunosuppressant resulted in an improvement in switching mycophenolate mofetil to an alternative respiratory symptoms. immunosuppressant resulted in serum IgG levels returning to normal. Key Message • A review of case reports and • In some of the confirmed cases • The product information (SmPC published studies showed of hypogammaglobulinaemia and PL) for these products will be that mycophenolate mofetil and bronchiectasis, switching updated shortly with the respective (as the active mycophenolic mycophenolate mofetil to an warnings. acid) in combination with other alternative immunosuppressant • Healthcare professionals should immunosuppressants can cause resulted in improvement in report any suspected adverse hypogammaglobulinaemia and symptoms. reactions associated with bronchiectasis. • A Direct Healthcare Professional mycophenolate mofetil and • Patients who experience recurrent Communication (DHPC) was mycophenolic acid to the HPRA. infections should have their serum circulated by the Marketing immunoglobulins
Recommended publications
  • Us 8530498 B1 3
    USOO853 0498B1 (12) UnitedO States Patent (10) Patent No.: US 8,530,498 B1 Zeldis (45) Date of Patent: *Sep. 10, 2013 (54) METHODS FORTREATING MULTIPLE 5,639,476 A 6/1997 OShlack et al. MYELOMAWITH 5,674,533 A 10, 1997 Santus et al. 3-(4-AMINO-1-OXO-1,3-DIHYDROISOINDOL- 395 A 22 N. 2-YL)PIPERIDINE-2,6-DIONE 5,731,325 A 3/1998 Andrulis, Jr. et al. 5,733,566 A 3, 1998 Lewis (71) Applicant: Celgene Corporation, Summit, NJ (US) 5,798.368 A 8, 1998 Muller et al. 5,874.448 A 2f1999 Muller et al. (72) Inventor: Jerome B. Zeldis, Princeton, NJ (US) 5,877,200 A 3, 1999 Muller 5,929,117 A 7/1999 Muller et al. 5,955,476 A 9, 1999 Muller et al. (73) Assignee: Celgene Corporation, Summit, NJ (US) 6,020,358 A 2/2000 Muller et al. - 6,071,948 A 6/2000 D'Amato (*) Notice: Subject to any disclaimer, the term of this 6,114,355 A 9, 2000 D'Amato patent is extended or adjusted under 35 SS f 1939. All et al. U.S.C. 154(b) by 0 days. 6,235,756 B1 5/2001 D'Amatoreen et al. This patent is Subject to a terminal dis- 6,281.230 B1 8/2001 Muller et al. claimer 6,316,471 B1 1 1/2001 Muller et al. 6,326,388 B1 12/2001 Man et al. 6,335,349 B1 1/2002 Muller et al. (21) Appl. No.: 13/858,708 6,380.239 B1 4/2002 Muller et al.
    [Show full text]
  • Multinational Evaluation of Mycophenolic Acid, Tacrolimus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE providedORIGINAL by University of QueenslandPAPER eSpace ISSN 1425-9524 © Ann Transplant, 2016; 21: 1-11 DOI: 10.12659/AOT.895664 Received: 2015.08.15 Accepted: 2015.09.01 Multinational Evaluation of Mycophenolic Published: 2016.01.05 Acid, Tacrolimus, Cyclosporin, Sirolimus, and Everolimus Utilization Authors’ Contribution: ABCDEF Kyle M. Gardiner School of Pharmacy, University of Queensland, Brisbane, QLD, Australia Study Design A ACDEF Susan E. Tett Data Collection B Statistical Analysis C ACDEF Christine E. Staatz Data Interpretation D Manuscript Preparation E Literature Search F Funds Collection G Corresponding Author: Christine E. Staatz, e-mail: [email protected] Source of support: Departmental funding only Background: Increasing immunosuppressant utilization and expenditure is a worldwide challenge as more people success- fully live with transplanted organs. Our aims were to characterize utilization of mycophenolate, tacrolimus, cy- closporin, sirolimus, and everolimus in Australian transplant recipients from 2007 to 2013; to identify specific patterns of usage; and to compare Australian utilization with Norwegian, Danish, Swedish, and the Netherlands use. Material/Methods: Australian utilization and expenditure data were captured through national Pharmaceutical Benefits Scheme and Highly Specialized Drug administrative databases. Norwegian, Danish, Swedish, and the Netherlands uti- lization were retrieved from their healthcare databases. Utilization was compared as defined daily dose per 1000 population per day (DDD/1000 population/day). Data on kidney transplant recipients, the predominant patient group prescribed these medicines, were obtained from international transplant registries. Results: From 2007–2013 Australian utilization of mycophenolic acid, tacrolimus and everolimus increased 2.7-fold, 2.2- fold, and 2.3-fold, respectively.
    [Show full text]
  • WHO Drug Information Vol 22, No
    WHO Drug Information Vol 22, No. 1, 2008 World Health Organization WHO Drug Information Contents Challenges in Biotherapeutics Miglustat: withdrawal by manufacturer 21 Regulatory pathways for biosimilar Voluntary withdrawal of clobutinol cough products 3 syrup 22 Pharmacovigilance Focus Current Topics WHO Programme for International Drug Proposed harmonized requirements: Monitoring: annual meeting 6 licensing vaccines in the Americas 23 Sixteen types of counterfeit artesunate Safety and Efficacy Issues circulating in South-east Asia 24 Eastern Mediterranean Ministers tackle Recall of heparin products extended 10 high medicines prices 24 Contaminated heparin products recalled 10 DacartTM development terminated and LapdapTM recalled 11 ATC/DDD Classification Varenicline and suicide attempts 11 ATC/DDD Classification (temporary) 26 Norelgestromin-ethynil estradiol: infarction ATC/DDD Classification (final) 28 and thromboembolism 12 Emerging cardiovascular concerns with Consultation Document rosiglitazone 12 Disclosure of transdermal patches 13 International Pharmacopoeia Statement on safety of HPV vaccine 13 Cycloserine 30 IVIG: myocardial infarction, stroke and Cycloserine capsules 33 thrombosis 14 Erythropoietins: lower haemoglobin levels 15 Recent Publications, Erythropoietin-stimulating agents 15 Pregabalin: hypersensitivity reactions 16 Information and Events Cefepime: increased mortality? 16 Assessing the quality of herbal medicines: Mycophenolic acid: pregnancy loss and contaminants and residues 36 congenital malformation 17 Launch
    [Show full text]
  • Patient Focused Disease State and Assistance Programs
    Patient Focused Disease State and Assistance Programs Medication Medication Toll-free Brand (Generic) Website number Additional Resources Allergy/Asthma Xolair (omalizumab) xolair.com 1-866-4-XOLAIR lung.org Cardiovascular Pradaxa (dabigatran) pradaxa.com 877-481-5332 heart.org Praluent (alirocumab) praluent.com 844-PRALUENT thefhfoundation.org Repatha (evolocumab) repatha.com 844-REPATHA Tikosyn (dofetilide) tikosyn.com 800-879-3477 Crohn’s Disease Cimzia (certolizumab pegol) cimzia.com 866-4-CIMZIA crohnsandcolitis.com Humira (adalimumab) humira.com 800-4-HUMIRA crohnsforum.com Stelara (ustekinumab) stelarainfo.com 877-STELARA Dermatology Cosentyx (secukinumab) cosentyx.com 844-COSENTYX psoriasis.org Dupixent (dupilumab) dupixent.com 844-DUPIXENT nationaleczema.org Enbrel (etanercept) enbrel.com 888-4-ENBREL Humira (adalimumab) humira.com 800-4-HUMIRA Otezla (apremilast) otezla.com 844-4-OTEZLA Stelara (ustekinumab) stelarainfo.com 877-STELARA Taltz (ixekizumab) taltz.com 800-545-5979 Hematology Aranesp (darbepoetin alfa) aranesp.com 805-447-1000 chemocare.com Granix (filgrastim) granixrx.com 888-4-TEVARX hematology.org Jadenu (deferasirox) jadenu.com 888-282-7630 Neulasta (pegfilgrastim) neulasta.com 800-77-AMGEN Neupogen (filgrastim) neupogen.com 800-77-AMGEN Nivestym (filgrastim) nivestym.com 800-879-3477 Zarxio (filgrastim) zarxio.com 800-525-8747 Zytiga (abiraterone) zytiga.com 800-JANSSEN Hepatitis B Baraclude (entecavir) baraclude.com 800-321-1335 cdc.gov Viread (tenofovir disoproxil viread.com 800-GILEAD-5 hepb.org fumarate)
    [Show full text]
  • Dimethyl Fumarate Or Any of the Excipients of TECFIDERA Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION ___________________ CONTRAINDICATIONS ___________________ These highlights do not include all the information needed to use Known hypersensitivity to dimethyl fumarate or any of the excipients of TECFIDERA safely and effectively. See full prescribing information for TECFIDERA. (4) TECFIDERA. _______________ _______________ WARNINGS AND PRECAUTIONS TECFIDERA® (dimethyl fumarate) delayed-release capsules, for oral use • Anaphylaxis and angioedema: Discontinue and do not restart TECFIDERA Initial U.S. Approval: 2013 if these occur. (5.1) • Progressive multifocal leukoencephalopathy (PML): Withhold _________________ RECENT MAJOR CHANGES _________________ TECFIDERA at the first sign or symptom suggestive of PML. (5.2) Dosage and Administration, Blood Test Prior to • Lymphopenia: Obtain a CBC including lymphocyte count before initiating TECFIDERA, after 6 months, and every 6 to 12 months thereafter. Initiation of Therapy (2.2) 1/2017 9 Warnings and Precautions, PML (5.2) 2/2016 Consider interruption of TECFIDERA if lymphocyte counts <0.5 x 10 /L Warnings and Precautions, Liver Injury (5.4) 1/2017 persist for more than six months. (5.3) • Liver injury: Obtain serum aminotransferase, alkaline phosphatase, and total bilirubin levels before initiating TECFIDERA and during treatment, __________________ INDICATIONS AND USAGE _________________ as clinically indicated. Discontinue TECFIDERA if clinically significant TECFIDERA is indicated for the treatment of patients with relapsing forms of liver injury induced by TECFIDERA is suspected. (5.4) multiple sclerosis (1) _______________ DOSAGE AND ADMINISTRATION ______________ ___________________ ADVERSE REACTIONS ___________________ • Starting dose: 120 mg twice a day, orally, for 7 days (2.1) Most common adverse reactions (incidence ≥10% and ≥2% placebo) were • Maintenance dose after 7 days: 240 mg twice a day, orally (2.1) flushing, abdominal pain, diarrhea, and nausea.
    [Show full text]
  • COMPARISON of the WHO ATC CLASSIFICATION & Ephmra/Intellus Worldwide ANATOMICAL CLASSIFICATION
    COMPARISON OF THE WHO ATC CLASSIFICATION & EphMRA/Intellus Worldwide ANATOMICAL CLASSIFICATION: VERSION June 2019 2 Comparison of the WHO ATC Classification and EphMRA / Intellus Worldwide Anatomical Classification The following booklet is designed to improve the understanding of the two classification systems. The development of the two systems had previously taken place separately. EphMRA and WHO are now working together to ensure that there is a convergence of the 2 systems rather than a divergence. In order to better understand the two classification systems, we should pay attention to the way in which substances/products are classified. WHO mainly classifies substances according to the therapeutic or pharmaceutical aspects and in one class only (particular formulations or strengths can be given separate codes, e.g. clonidine in C02A as antihypertensive agent, N02C as anti-migraine product and S01E as ophthalmic product). EphMRA classifies products, mainly according to their indications and use. Therefore, it is possible to find the same compound in several classes, depending on the product, e.g., NAPROXEN tablets can be classified in M1A (antirheumatic), N2B (analgesic) and G2C if indicated for gynaecological conditions only. The purposes of classification are also different: The main purpose of the WHO classification is for international drug utilisation research and for adverse drug reaction monitoring. This classification is recommended by the WHO for use in international drug utilisation research. The EphMRA/Intellus Worldwide classification has a primary objective to satisfy the marketing needs of the pharmaceutical companies. Therefore, a direct comparison is sometimes difficult due to the different nature and purpose of the two systems.
    [Show full text]
  • Forty-Sixth Annual MALTO Medicinal Chemistry & Pharmacognosy
    Forty-Sixth Annual MALTO Medicinal Chemistry & Pharmacognosy Meeting-in-Miniature May 20th – 22nd, 2019 Hosted by The Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center, Memphis, TN A A O O M L M L T T 1 | Page 2019 MALTO Meeting At the University of Tennessee Health Science Center College of Pharmacy Table of Contents Page 2019 MALTO Contributors and Sponsors……………..………….……....4 2019 MALTO Executive Officers……………..……………..…………..…4 MALTO Board of Directors………………………………………..………5 MALTO 2019 Organizing Committee……………………………………..5 General Program…………………………………………………….……6-7 MALTO – A Brief History………………………………………………..8-9 A. Nelson Voldeng Memorial Lecture………………………...…….....10-11 Dr. Jeff Aubé, Fred Eshelman Distinguished Professor of Chemistry, The University of North Carolina Eshelman School of Pharmacy Biographical Information………………………………………..….11 Abstract………………………………………………………………12 History of The Robert A. Magarian Outstanding Podium Presentation Award ………………………..……………………………….…………13-15 History of The Thomas L. Lemke Outstanding Poster Presentation Award…………………………………………………………..… …….16-17 History of The Ronald F. Borne Outstanding Poster Presentation Award……………………………………………………………………18-19 Meeting Schedule for Monday, May 20th, 2019…………………….….…20 2 | Page Meeting Schedule for Tuesday, May 21st, 2019………………………20-26 Meeting Schedule for Wednesday, May 22nd, 2019…………………..27-28 Podium Presentation Abstracts………..……………………...………29-52 Poster Presentation Abstracts …………………..……….……………53-70 MALTO Primary Contacts………………………………………...….71-73
    [Show full text]
  • Utility of Monitoring Mycophenolic Acid in Solid Organ Transplant Patients
    Evidence Report/Technology Assessment Number 164 Utility of Monitoring Mycophenolic Acid in Solid Organ Transplant Patients Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-02-0020 Task Order Leader: Parminder Raina, Ph.D. Director, McMaster University Evidence-based Practice Center Co-Principal Investigators: Mark Oremus, Ph.D. Johannes Zeidler, Ph.D., D.A.B.C.C. Authors: Mark Oremus, Ph.D. Johannes Zeidler, Ph.D., D.A.B.C.C. Mary H.H. Ensom, Pharm.D., F.A.S.H.P., F.C.C.P., F.C.S.H.P. Mina Matsuda-Abedini, M.D.C.M., F.R.C.P.C. Cynthia Balion, Ph.D., F.C.A.C.B. Lynda Booker, B.A. Carolyn Archer, M.Sc. Parminder Raina, Ph.D. AHRQ Publication No. 08-E006 February 2008 This report is based on research conducted by the McMaster University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0020). The findings and conclusions in this document are those of the author(s), who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help clinicians, employers, policymakers, and others make informed decisions about the provision of health care services.
    [Show full text]
  • Dimethyl Fumarate and Progressive Multifocal Leucoencephalopathy (PML)
    Dimethyl fumarate and progressive multifocal leucoencephalopathy (PML) Introduction Dimethyl fumarate Psorinovo® is not registered through the Medicines Evaluation Board (MEB). It is a compounded drug made by GMP compounding pharmacy Mierlo Hout in the Netherlands, and used for the indication psoriasis [1]. Psorinovo® has been compounded by pharmacy Mierlo Hout for 28 years. According to Dutch law Mierlo Hout pharmacy is regarded as a supplying-pharmacy. ® Dimethyl fumarate, registered as Tecfidera , was granted marketing authorization in the Netherlands on 30 January 2014 and is indicated for the treatment of adult patients with relapsing remitting multiple sclerosis [2]. Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system caused by reactivation of the polyomavirus JC (JC virus). Asymptomatic primary infection with the JC virus occurs in childhood, antibodies can be found in 86% of adults. PML occurs almost exclusively in immunosuppressed individuals. There were only isolated cases reported of PML in patients without apparent immunosuppression. However, there are reports of PML affecting patients who have conditions associated with minimal or occult immunosuppression, such as hepatic cirrhosis and renal failure [3]. PML has also been reported in patients treated with drugs such as belatacept, brentuximab, efalizumab, fludarabine, glucocorticoids, infliximab, mycophenolate, rituximab, ruxolitinib and natalizumab. In some cases, these drugs were used in combination with other immunosuppressive medications (eg, cyclophosphamide, leflunomide, methotrexate). Many of the patients had an underlying hematologic malignancy or collagen vascular disease [3]. There is no specific treatment for PML. The main approach is restoring the host adaptive immune response, a strategy that appears to prolong survival.
    [Show full text]
  • Thesis Outline
    PHARMACOKINETICS, LIMITED SAMPLING STRATEGIES, AND PHARMACOGENETICS OF MYCOPHENOLIC ACID IN THORACIC TRANSPLANT RECIPIENTS by LILLIAN S.L. TING M.Sc., The University of British Columbia, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Pharmaceutical Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March, 2009. © Lillian S.L. Ting, 2009 ABSTRACT Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil, is an immunosuppressive agent known to exhibit wide inter-patient pharmacokinetic variability. The metabolism and transport of MPA and the phenolic (MPAG) and acyl (AcMPAG) glucuronides are mediated by UDP-glucuronosyltransferases (UGTs) and multidrug resistance-associated protein 2 (MRP2/ABCC2), respectively. Increasing evidence supports monitoring MPA area-under-the-concentration-time-curve; however, it is impractical and costly to implement. The objectives of this clinical study were to characterize MPA pharmacokinetics, develop MPA limited sampling strategies for estimating MPA exposure, and assess contribution of UGT and ABCC2 genetics to MPA pharmacokinetics and clinical outcomes in thoracic transplant recipients. Seventy thoracic (36 lung, 34 heart) transplant recipients were recruited. Eleven blood samples were obtained over a 12-hour dosing period at steady state. Plasma concentrations of MPA, MPAG, AcMPAG, and free MPA were measured by a high performance liquid chromatography-ultraviolet detection method, and conventional dose- normalized pharmacokinetic parameters were determined via non-compartmental methods. Limited sampling strategies were developed in 64 subjects by stepwise multiple regression analysis using the index group data, and tested in the validation group to determine bias and precision. Genetic polymorphisms in UGT and ABCC2 were determined by sequencing and their contributions to pharmacokinetic variability were investigated in 68 thoracic transplant recipients using multivariate analysis.
    [Show full text]
  • Mycophenolic Acid) Delayed-Release Tablets, for Oral Use System Disease
    HIGHLIGHTS OF PRESCRIBING INFORMATION Blood Dyscrasias including Pure Red Cell Aplasia (PRCA): Monitor for These highlights do not include all the information needed to use neutropenia or anemia; consider treatment interruption or dose reduction. MYFORTIC safely and effectively. See full prescribing information for (5.7) MYFORTIC. Serious GI Tract Complications (gastrointestinal bleeding, perforations and ulcers): Administer with caution to patients with active digestive MYFORTIC® (mycophenolic acid) delayed-release tablets, for oral use system disease. (5.8) Initial U.S. Approval: 2004 Immunizations: Avoid live vaccines. (5.9) WARNING: EMBRYOFETAL TOXICITY, MALIGNANCIES, AND Patients with Hereditary Deficiency of Hypoxanthine-guanine SERIOUS INFECTIONS Phosphoribosyl-transferase (HGPRT): May cause exacerbation of disease symptoms; avoid use. (5.10) See full prescribing information for complete boxed warning ------------------------------ADVERSE REACTIONS------------------------------- Use during pregnancy is associated with increased risks of pregnancy loss and congenital malformations. Females of reproductive potential Most common adverse reactions (≥20%): anemia, leukopenia, constipation, must be counseled regarding pregnancy prevention and planning. nausea, diarrhea, vomiting, dyspepsia, urinary tract infection, CMV infection, (5.1, 8.1, 8.6) insomnia, and postoperative pain. (6.2) Increased risk of development of lymphoma and other malignancies, To report SUSPECTED ADVERSE REACTIONS, contact Novartis particularly of the skin,
    [Show full text]
  • Immunosuppressive Therapy DR
    OCTOBER 2017 Immunosuppressive Therapy DR. ANDREW MACKIN BVSc BVMS MVS DVSc FANZCVSc DipACVIM Professor of Small Animal Internal Medicine Mississippi State University College of Veterinary Medicine, Starkville, MS A number of established immunosuppressive agents have been used in small animal medicine for many decades. Some have justifiably fallen out of favor whereas, for others, new and promising uses have been described in the recent veterinary literature. Established “old favorites” have included cyclophosphamide, chlorambucil, azathioprine, danazol and vincristine, although cyclophosphamide and danazol are rarely used as immunosuppressive agents these days. Several potent immunosuppressive drugs developed over the past few decades in human medicine have recently made the leap to our small animal patients, and our use of drugs such as cyclosporine, leflunomide and mycophenolate is growing. Cyclophosphamide Cyclophosphamide, a cell-cycle nonspecific nitrogen mustard derivative alkylating agent, was one of the first major chemotherapeutic agents approved by the FDA over 50 years ago, and has since become very well-established in human medicine as both an antineoplastic drug and as an immunosuppressive agent. Within a few years of FDA approval in the late 1950s, the use of cyclophosphamide for the prevention of transplant rejection in experimental models and for the treatment of both neoplasia and immune-mediated diseases was described in both dogs and cats. Cyclophosphamide has persisted to this day as one of the core drugs used in many small animal cancer chemotherapeutic protocols. In contrast, after many years as one of the most commonly immunosuppressive drugs utilized to treat immune-mediated diseases in cats and dogs, the use of cyclophosphamide as an immunosuppressive agent in small animal patients has in the past two decades essentially faded away.
    [Show full text]