Embryos of the Viviparous Dermapteran, Arixenia Esau Develop Sequentially in Two Compartments: Terminal Ovarian Follicles and the Uterus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PAEDOGENESIS in ERISTALIS ARBUSTORUM
PAEDOGENESIS in ERISTALIS ARBUSTORUM Bart Achterkamp, under supervision of dr. Mart M. Ottenheim, dr. Leo W. Beukeboom and prof.dr. Paul M. Brakefield Section Evolutionary Biology and Section Animal Ecology, Institute of Evolutionary and Ecological Sciences Leiden University M. Sc. Thesis 1999 PAEDOGENESIS in Eristalis arbustorum (Diptera: Syrphidae) Sum mary Paedogenesisis the reproduction by larvae or juveniles. In insects this form of reproduction is known from one beetle, several species of gall midges and possibly Erisalishoverfiies.This study aims to show paedogenesis forE. arbuslorum under controlled conditions. The first two experiments were unsuccessful. In the third experiment, a total of 1266 larvae were reared and five occasions of paedogenesis were recorded among 542 successful pupations. In all cases of paedogenesis, one larva was put in the container and two larvae or pupae were collected later. The life history consequences of this way of reproduction are discussed. "Now don't forget. Gorold .THIS time punch some holes in the lid!" 2 I cunvrt(': BiBLIOTHEEK RU GRONINGEN 30 — * i7DOAA H"'t IIIIIIIIIIIIIIIIIIIIiIIIIIIIIIIIIII 217Q70R4 D67 INTRODUCTION .4 1.1 Life history .4 1.2 Terminology 5 1.3 Bisexual or parthenogenetic reproduction9 8 1 .4 Paedogenesis in non-insect animals 8 1.4.1 Phylum Hydrozoa 8 1.4.2 Phylum Platyhelminthes 9 1.4.3 Phylum Arthropoda: Rhizocephalan barnacles 9 1.4.4 Phylum Echinodermata 9 1.4.5 Paedogenetic salamanders 10 1.5 Paedogenesis in insects 11 1.5.1 Paedogenesis in Hemiptera 11 1.5.2 Paedogenesis -
Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence
When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence Petr Kocarek1*, Vaclav John2, Pavel Hulva2,3 1 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic, 2 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 3 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Abstract Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy. -
Thesis Rests with Its Author
University of Bath PHD Paedogenetic reproduction in Mycophila speyeri and Heteropeza pygmaea (Cecidomyiidae, Diptera) Hunt, Justine L. Award date: 1996 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. Oct. 2021 Paedogenetic Reproduction in Mycophila speyeri and Heteropeza pygmaea (Ceeidomyiidae, Diptera). Submitted by Justine L. Hunt for the degree of PhD. of the University of Bath, 1996. Copyright Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Earwigs from Brazilian Caves, with Notes on the Taxonomic and Nomenclatural Problems of the Dermaptera (Insecta)
A peer-reviewed open-access journal ZooKeys 713: 25–52 (2017) Cave-dwelling earwigs of Brazil 25 doi: 10.3897/zookeys.713.15118 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta) Yoshitaka Kamimura1, Rodrigo L. Ferreira2 1 Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan 2 Center of Studies in Subterranean Biology, Biology Department, Federal University of Lavras, CEP 37200-000 Lavras (MG), Brazil Corresponding author: Yoshitaka Kamimura ([email protected]) Academic editor: Y. Mutafchiev | Received 17 July 2017 | Accepted 19 September 2017 | Published 2 November 2017 http://zoobank.org/1552B2A9-DC99-4845-92CF-E68920C8427E Citation: Kamimura Y, Ferreira RL (2017) Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta). ZooKeys 713: 25–52. https://doi.org/10.3897/zookeys.713.15118 Abstract Based on samples collected during surveys of Brazilian cave fauna, seven earwig species are reported: Cy- lindrogaster cavernicola Kamimura, sp. n., Cylindrogaster sp. 1, Cylindrogaster sp. 2, Euborellia janeirensis, Euborellia brasiliensis, Paralabellula dorsalis, and Doru luteipes, as well as four species identified to the (sub) family level. To date, C. cavernicola Kamimura, sp. n. has been recorded only from cave habitats (but near entrances), whereas the other four organisms identified at the species level have also been recorded from non-cave habitats. Wings and female genital structures of Cylindrogaster spp. (Cylindrogastrinae) are examined for the first time. The genital traits, including the gonapophyses of the 8th abdominal segment shorter than those of the 9th segement, and venation of the hind wings of Cylindrogastrinae correspond to those of the members of Diplatyidae and not to Pygidicranidae. -
Annotated Checklist of the Gall Midges from the Netherlands, Belgium and Luxembourg (Diptera: Cecidomyiidae) Hans Roskam & Sébastien Carbonnelle
annotated checklist of the gall midges from the netherlands, belgium and luxembourg (diptera: cecidomyiidae) Hans Roskam & Sébastien Carbonnelle The gall midges are one of the most important groups of gall makers. Emerging larvae produce stimuli and the host plant responds by producing galls, fascinating structures which provide food and shelter for the developing larvae. Most gall inducing midges are host specific: they are only able to induce galls in a few, often related, plant species. A few species have different feeding modes: among them are saprophagous, fungivorous and predaceous species and some are used in biocontrol. We recorded 416 species in the whole area; 366 species are recorded from the Netherlands, 270 species from Belgium and 96 species from Luxembourg. importance, in the 8th volume in the series by introduction Barnes (1946-1969) and published eleven papers Over more than a century M.W. Beijerinck (1851- (1957-1999) on gall midges new for the Dutch 1931), J.C.H. de Meijere (1866-1947) and W.M. fauna, and, last but not least, was responsible for Docters van Leeuwen (1880-1960) wrote impor- the cecidomyiids in the Checklist of the Diptera tant papers about plant galls in the Netherlands. of the Netherlands by Beuk (2002). Nijveldt’s Dutch checklists of Diptera started with Bennet collection of microscope slides, more than 5,600 & van Olivier (1825, with all species placed in specimens, 4,300 of Dutch origin, mainly collected Tipula). Checklists of cecidomyiids were started by, by himself, but also by De Meijere and Van der e.g., Van der Wulp (1859, 18 spp.), Van der Wulp Wulp during the second half of the 19th, and first & De Meijere (1898, 63 spp.) and De Meijere half of the 20th century, and also included in the (1939), with many supplements (e.g., De Meijere Naturalis collection, is a second main reference 1946). -
Dermaptera Hindwing Structure and Folding: New Evidence for Familial, Ordinal and Superordinal Relationships Within Neoptera (Insecta)
Eur. J. Entorno!. 98: 445-509, 2001 ISSN 1210-5759 Dermaptera hindwing structure and folding: New evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta) Fabian HAAS1 and Jarmila KUKALOVÂ-PECK2 1 Section ofBiosystematic Documentation, University ofUlm, Helmholtzstr. 20, D-89081 Ulm, Germany; e-mail: [email protected] 2Department ofEarth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; e-mail: [email protected] Key words.Dermaptera, higher phylogenetics, Pterygota, insect wings, wing folding, wing articulation, protowing Abstract. The Dermaptera are a small order of insects, marked by reduced forewings, hindwings with a unique and complicated folding pattern, and by pincer-like cerci. Hindwing characters of 25 extant dermapteran species are documented. The highly derived hindwing venation and articulation is accurately homologized with the other pterygote orders for the first time. The hindwing base of Dermaptera contains phylogenetically informative characters. They are compared with their homologues in fossil dermapteran ancestors, and in Plecoptera, Orthoptera (Caelifera), Dictyoptera (Mantodea, Blattodea, Isoptera), Fulgoromorpha and Megaloptera. A fully homologized character matrix of the pterygote wing complex is offered for the first time. The wing venation of the Coleo- ptera is re-interpreted and slightly modified . The all-pterygote character analysis suggests the following relationships: Pterygota: Palaeoptera + Neoptera; Neoptera: [Pleconeoptera + Orthoneoptera] + -
Checklist of Sapro-Mycophagous Cecidomyiids (Diptera: Cecidomyiidae) from Korea
Entomological Research Bulletin 33(2): 115-117 (2017) Insect diversity Checklist of Sapro-mycophagous Cecidomyiids (Diptera: Cecidomyiidae) from Korea Daseul Ham and Yeon Jae Bae* Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, Korea *Correspondence Abstract Yeon Jae Bae, Division of Environmental Science and Ecological Engineering, A revised checklist of the Korean sapro-mycophagous cecidomyiids is provided. College of Life Sciences and Biotechnology, Anaretella defecta (Winnertz), Lestremia cinerea Macquart, Lestremia leucophaea Korea University, 145 Anam-ro, Seongbuk- (Meigen), Coccopsilis marginata (Meijere), Divellepidosis rotundata (Yukawa), gu, Seoul 02841, Republic of Korea E-mail: [email protected] Divellepidosis separata (Yukawa), and Stomatocolpodia decussata (Yukawa) are added to the Korean sapro-mycophagous cecidomyiid fauna and Peromyia spinosa Received 10 November 2017 Jaschhof is moved to the subfamily Micromyinae from Lestremiinae. Accepted 15 November 2017 Key words: checklist, Korean sapro-mycophagous cecidomyiids Introduction based on previous taxonomic studies and checklists of Kore- an sapro-mycophagous cecidomyiids (ESK & KSAE 1994, Members of the gall midge family Cecidomyiidae are tiny Lee & Kim 2003, Paek et al. 2010, Shin et al. 2011, Ham & and fragile midges, ranging 0.5-3 mm in body length, rare- Bae 2016a, 2016b). Twelve species of Korean sapro-myco- ly larger than 8 mm (Oosterbroek & Hurkmans 2006). They phagous cecidomyiids belonging to 8 genera and 3 subfam- can be divided into three groups, phytophagous, predaceous, ilies are listed in this study. Further taxonomic studies are and sapro-mycophagous gall midges, based on feeding hab- needed not only to add Korean sapro-mycophagous cecido- its of larvae (Yukawa 1971, Harris 2004a). -
Shiraki) (Insecta: Dermaptera: Diplatyidae
Arthropod Systematics & Phylogeny 83 69 (2) 83 – 97 © Museum für Tierkunde Dresden, eISSN 1864-8312, 21.07.2011 Reproductive biology and postembryonic development in the basal earwig Diplatys flavicollis (Shiraki) (Insecta: Dermaptera: Diplatyidae) Shota Shimizu * & RyuichiRo machida Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan [[email protected]] [[email protected]] * Corresponding author Received 31.iii.2011, accepted 20.iv.2011. Published online at www.arthropod-systematics.de on 21.vii.2011. > Abstract Based on captive breeding, reproductive biology including mating, egg deposition and maternal brood care, and postembry- onic development were examined and described in detail in the basal dermapteran Diplatys flavicollis (Shiraki, 1907) (For- ficulina: Diplatyidae). The eggs possess an adhesive stalk at the posterior pole, by which they attach to the substratum. The mother cares for the eggs and offspring, occasionally touching them with her antennae and mouthparts, but the maternal care is less intensive than in the higher Forficulina. The prelarva cuts open the egg membranes with its egg tooth, a structure on the embryonic cuticle, to hatch out, and, simultaneously, sheds the cuticle to become the first instar. The number of larval instars is eight or nine. Prior to eclosion, the final instar larva eats its own filamentous cerci, with only the basalmost cerco- meres left, and a pair of forceps appears in the adult. The present observations were compared with previous information on Dermaptera. The adhesive substance is an ancestral feature of Dermaptera, and the adhesive stalk may be a characteristic of Diplatyidae. The attachment of the eggs and less elaborate maternal brood care are regarded as plesiomorphic in Der- maptera. -
Universidade Federal Da Paraíba Campus Ii – Areia-Pb Centro De Ciências Agrárias Curso De Bacharelado Em Ciências Biológicas
UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS II – AREIA-PB CENTRO DE CIÊNCIAS AGRÁRIAS CURSO DE BACHARELADO EM CIÊNCIAS BIOLÓGICAS ROSÂNGELA MIRANDA DE LIMA CARACTERIZAÇÃO MORFOLÓGICA DE Marava arachidis, (Dermaptera: Labiidae) E Euborelia annullipes, (Dermaptera: Anisolabididae) PARA IDENTIFICAÇÃO DO DIMORFISMO SEXUAL AREIA 2020 ROSÂNGELA MIRANDA DE LIMA CARACTERIZAÇÃO MORFOLÓGICA DE Marava arachidis, (Dermaptera: Labiidae) E Euborelia annullipes, (Dermaptera: Anisolabididae) PARA IDENTIFICAÇÃO DO DIMORFISMO SEXUAL Trabalho de Conclusão de Curso apresentado a Universidade Federal da Paraíba, como requisito parcial para a obtenção do título de Bacharel em Ciências Biológicas. Orientador: Prof. Dr. Carlos Henrique de Brito AREIA 2020 Catalogação na publicação Seção de Catalogação e Classificação L732c Lima, Rosângela Miranda de. Caracterização morfológica de Marava arachidis, (Dermaptera: Labiidae) e Euborelia annullipes, (Dermaptera: Anisolabididae) para identificação do dimorfismo sexual / Rosângela Miranda de Lima. - Areia, 2020. 36f. : il. Orientação: Carlos Henrique de Brito Brito. Monografia (Graduação) - UFPB/CCA. 1. Diferenças sexuais. 2. Fórceps. 3. Tesourinhas. 4. Dermápteros. 5. Características morfológicas. I. Brito, Carlos Henrique de Brito. II. Título. UFPB/CCA-AREIA i ROSÂNGELA MIRANDA DE LIMA CARACTERIZAÇÃO MORFOLÓGICA DE Marava arachidis, (Dermaptera: Labiidae) E Euborelia annullipes, (Dermaptera: Anisolabididae) PARA IDENTIFICAÇÃO DO DIMORFISMO SEXUAL Trabalho de Conclusão de Curso apresentado a Universidade Federal da Paraíba, -
The Flies on Mushrooms Cultivated in the Antalya-Korkuteli District And
AKDENİZ ÜNİVERSİTESİ Re v iew Article / Derleme Makalesi ZİRAAT FAKÜLTESİ DERGİSİ (201 5 ) 2 8 ( 2 ): 61 - 66 www.ziraatdergi.akdeniz.edu.tr The flies on mushrooms cultivated in the Antalya - Korkuteli district and their control Antalya - Korkuteli Yöresi’nde kültürü yapılan mantarlarda bulunan sinekler ve mücadelesi Fedai ERLER 1 , Ersin POLAT 2 1 Akdeniz Üniversitesi Ziraat Fakültesi Bitki Kor uma Bölümü, 07070 Antalya 2 Akdeniz Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, 07070 Antalya Corresponding author ( Sorumlu yazar ): F . Erler , e - mai l ( e - posta ): [email protected] ARTICLE INFO ABSTRA CT Received 04 April 2014 Over the last two decades, mushroom growing has become one of the most dynamically Received in revised form 24 July 2014 developing fields of agriculture in Turkey. In parallel with this development, populations of Accepted 20 March 2015 some arthropod pests, especially mushroom flies belonging to different families of the order Diptera, have steeply increased in recent years. Sciarid, phorid and cecidomyiid flies, Keywords : especially Lycoriella ingenua (Dufour) (Sciaridae) and Megas elia halterata (Wood) (Phoridae) being the most common species in the Antalya - Korkuteli district (South - Western Agaricus bisporus Turkey), affected the cultivation of white button mushroom [ Agaricus bisporus (Lange) Cultivated mushroom Imbach], the most commonly grown mushroom species in Turke y. Recently, mushroom Mushroom flies scatopsid flies (Scatopsidae) have arisen as a serious new threat in the Antalya - Korkuteli Contr ol district. It is surmised that the infestation by these flies has affected approximately 70% of the Antalya mushroom growing cellars in the district. Un til now, a total of 15 fly species ( Sciaridae: 3, Phoridae: 1, Cecidomyiidae: 8 and Scatopsidae: 3) was detected to cause damage in the cultivated mushrooms in the Korkuteli district. -
Pesticide Tables for Potato Pests
In fields that are plowed deeply in the fall, wireworms will turn but research is ongoing in this area. An important management up during plowing. They may be detected by following behind the consideration is avoiding prolonged periods of time between vine plow and checking for them in the turned-up soil. Fall plowing, death and harvest. Typical wireworm damage occurs mid-season however, is becoming much less common. and results at harvest in healed holes in tubers; however, tubers left in the field for weeks after vine death can be re-infested resulting in There are no established treatment thresholds for wireworms in serious tuber damage and tubers containing wireworms at harvest. potatoes. Management decisions are a complex assessment of crop history, scouting, previous pesticide treatments, etc. For more information, see http://cdn.intechopen.com/pdfs/28267.pdf Management—cultural and biological controls Management—chemical control: HOME USE Crop rotation is an important tool for wireworm control. ♦ azadirachtin (as a mix with pyrethrins)—Some formulations are Wireworms tend to increase rapidly among red and sweet clover OMRI-listed for organic use. and small grains (particularly barley and wheat). Birds feeding ♦ bifenthrin (as a mix with zeta-cypermethrin). in recently plowed fields destroy many wireworms. However, ♦ cyfluthrin in seriously infested fields this does not reduce the overall ♦ zeta-cypermethrin pest population below economic levels. To date, field tests of Management—chemical control: COMMERCIAL USE entomopathogenic nematodes in wireworm infested fields show they do not effectively control wireworms. There are no parasites or See: biological insecticides known to be effective in wireworm control, Pesticide Tables for Potato Pests Pesticide Tables for Potato Pests Tables 1-3 present nearly exhaustive lists of insecticides and biocontrol agents that are registered to control arthropod pests of potatoes in the PNW.