Phylogenomic Evidence of Adaptive Evolution in the Ancestry of Humans

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenomic Evidence of Adaptive Evolution in the Ancestry of Humans Phylogenomic evidence of adaptive evolution in the ancestry of humans Morris Goodmana,b,1 and Kirstin N. Sternera aCenter for Molecular Medicine and Genetics and bDepartment of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201 In Charles Darwin’s tree model for life’s evolution, natural selection nomic studies of human evolution. We then highlight the concepts adaptively modifies newly arisen species as they branch apart from that motivate our own efforts and discuss how phylogenomic evi- their common ancestor. In accord with this Darwinian concept, the dence has enhanced our understanding of adaptive evolution in the phylogenomic approach to elucidating adaptive evolution in genes ancestry of modern humans. and genomes in the ancestry of modern humans requires a well supported and well sampled phylogeny that accurately places Darwin’s Views humans and other primates and mammals with respect to one In The Descent of Man, and Selection in Relation to Sex (5), Charles another. For more than a century, first from the comparative immu- Darwin suggested that Africa was the birthplace for humankind. nological work of Nuttall on blood sera and now from comparative The following five passages encapsulate for us Darwin’s thinking genomic studies, molecular findings have demonstrated the close about the place of humans in primate phylogeny and about the kinship of humans to chimpanzees. The close genetic correspond- uniqueness of modern humans. ence of chimpanzees to humans and the relative shortness of our evolutionary separation suggest that most distinctive features of If the anthropomorphous apes be admitted to form a natural subgroup, then as man agrees with them, not only in all those the modern human phenotype had already evolved during our characters which he possesses in common with the whole Cata- ancestry with chimpanzees. Thus, a phylogenomic assessment of rhine group, but in other peculiar characters, such as the absence being human should examine earlier stages of human ancestry as of a tail and of callosities, and in general appearance, we may well as later stages. In addition, with the availability of a number of infer that some ancient member of the anthropomorphous sub- mammalian genomes, similarities in phenotype between distantly group gave birth to man (ref. 5, p. 160). related taxa should be explored for evidence of convergent or par- It is therefore probable that Africa was formerly inhabited by allel adaptive evolution. As an example, recent phylogenomic evi- extinct apes closely allied to the gorilla and chimpanzee; and as dence has shown that adaptive evolution of aerobic energy these two species are now man’s nearest allies, it is somewhat metabolism genes may have helped shape such distinctive modern more probable that our early progenitors lived on the African human features as long life spans and enlarged brains in the ances- continent than elsewhere (ref. 5, p. 161). tries of both humans and elephants. In regard to bodily size or strength, we do not know whether man is descended from some small species, like the chimpanzee, or from aerobic energy metabolism | brain | Charles Darwin | natural selection | one as powerful as the gorilla; and, therefore, we cannot say whether primate genomes man has become larger and stronger, or smaller and weaker, than his ancestors. We should, however, bear in mind that an animal harles Darwin proposed that natural selection favors inherited possessing great size, strength, and ferocity, and which, like the fi gorilla, could defend itself from all enemies, would not perhaps Cmodi cations that better adapt the organisms of a species to the have become social: and this would most effectually have checked environment of that species (1). Darwin also proposed the tree the acquirement of the higher mental qualities, such as sympathy ’ model for life s evolution. In this model, natural selection adaptively and the love of his fellows. Hence it might have been an immense modifies newly arisen species as they branch apart from their com- advantage to man to have sprung from some comparatively weak mon ancestor (1). Although there is now evidence that symbiotic creature (ref. 5, p. 65). fi merges produced the rst eukaryotes and that prokaryotic species As far as differences in certain important points of structure are engage in reticulate evolution (2–4), Darwin’s model of tree-like concerned, man may no doubt rightly claim the rank of a Suborder; branching appears to hold for the evolution of primates and other and this rank is too low, if we look chiefly to his mental faculties. vertebrates. Having deduced that species share common ancestors, Nevertheless, from a genealogical point of view it appears that this Darwin also reasoned that a truly natural system for classifying rank is too high, and that man ought to form merely a Family, or species would be genealogical, i.e., species should be classified possibly even only a Subfamily (ref. 5, p. 158). according to how recently they last shared a common ancestor. The Nevertheless the difference in mind between man and the higher hierarchical ranking in such a genealogical system could then be used animals, great as it is, certainly is one of degree and not of kind to indicate how relatively close or distant in geological time extant (ref. 5, p. 130). species are from their last common ancestor (LCA). Darwin’s application of the theory of evolution by natural In accord with this Darwinian framework, the phylogenomic selection to discussions of our own origins and place within approach to elucidating adaptive evolution in the ancestry of nature laid the foundation for modern phylogenetic and phylo- modern humans involves identifying the changes in genes and genomic studies of human evolution. He proposed that human- genomes on a phylogenetic tree that accurately places humans within the order Primates and, more widely, within the class Mammalia. Viewing the ancestries of many mammals, not just the ancestry of modern humans, could provide examples of convergent This paper results from the Arthur M. Sackler Colloquium of the National Academy of fi Sciences, “In the Light of Evolution IV: The Human Condition,” held December 10–12, adaptive evolution, which may point to speci c categories of genetic 2009, at the Arnold and Mabel Beckman Center of the National Academies of Sciences changes that are associated with important phenotypic changes. and Engineering in Irvine, CA. The complete program and audio files of most presentations This phylogenomic approach could help identify the positively are available on the NAS Web site at www.nasonline.org/SACKLER_Human_Condition. selected genetic changes that shaped such distinctive modern Author contributions: M.G. and K.N.S. designed research; M.G. analyzed data; and M.G. human features as prolonged prenatal and postnatal development, and K.N.S. wrote the paper. lengthened life spans, strong social bonds, enlarged brains, and high The authors declare no conflict of interest. cognitive abilities. In this article, we first briefly sketch out the his- This article is a PNAS Direct Submission. torical background of ideas and findings that have led to phyloge- 1To whom correspondence should be addressed. E-mail: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.0914626107 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 kind originated from man-like apes (first quote) in Africa and molecular clock model the LCA of humans, chimpanzees, and that humans are most allied to chimpanzees and gorillas (second gorillas was placed at only 5 Mya (13, 14). quote). Further, Darwin seems to have thought that our pro- The determination of the actual amino acid sequences of genitors were more like chimpanzees than gorillas (third quote). proteins began in the 1950s (15) and, in the ensuing decades, Darwin challenged the then orthodox view that a whole taxo- provided important information about human evolution. Phylo- nomic order, the Bimana, should consist of only one species, our genetic analysis of hemoglobin amino acid sequences pointed to own Homo sapiens. Instead, Darwin noted that genealogically, the possibility that chimpanzees and humans were more closely we humans should have no more than a family or even just a related to each other than either was to gorillas (16–18). This subfamily to ourselves (fourth quote), suggesting that Darwin analysis grouped chimpanzee and gorilla with human rather than might have been willing to have a family Hominidae that grou- with orangutan hemoglobin (17, 18) and showed human and ped modern humans with man-like apes. Moreover, Darwin also chimpanzee hemoglobin to be identical and slightly divergent commented on the most widely cited example of human from gorilla hemoglobin (16–18). uniqueness, the modern human mind. He postulated that the Estimates of interspecies genetic similarities were also obtained by difference between the modern human mind and the mind of DNA–DNA hybridization data. An initial set of such data reported other higher animals was one of degree not of kind (fifth quote). in 1972 (19), similar to the hemoglobin amino acid sequence data, Nearly a century after Darwin first proposed the theory of evo- suggested that instead of a human–chimpanzee–gorilla trichotomy, lution by natural selection, molecular evolution emerged as a humans and chimpanzees shared the more recent common ancestor. scientific field and molecular methods began to be used toward During the 1980s, extensive DNA–DNA hybridization data clearly the study of human evolution. Molecular evidence inferred from placed chimpanzees closer to humans than to gorillas (20, 21). Direct proteins and DNA data generated during the past 50 years have measurements of interspecies genetic similarities were provided by vindicated Darwin’s foresightedness and have decisively estab- the actual nucleotide sequences of orthologous DNAs, each set of lished that among living species modern humans have their these DNA orthologues apparently having descended from the same closest kinship to common and bonobo chimpanzees.
Recommended publications
  • New Fossil Discovery Illuminates the Lives of the Earliest Primates 24 February 2021
    New fossil discovery illuminates the lives of the earliest primates 24 February 2021 Royal Society Open Science. "This discovery is exciting because it represents the oldest dated occurrence of archaic primates in the fossil record," Chester said. "It adds to our understanding of how the earliest primates separated themselves from their competitors following the demise of the dinosaurs." Chester and Gregory Wilson Mantilla, Burke Museum Curator of Vertebrate Paleontology and University of Washington biology professor, were co-leads on this study, where the team analyzed fossilized teeth found in the Hell Creek area of northeastern Montana. The fossils, now part of the collections at the University of California Museum of Paleontology, Berkeley, are estimated to be 65.9 Shortly after the extinction of the dinosaurs, the earliest million years old, about 105,000 to 139,000 years known archaic primates, such as the newly described after the mass extinction event. species Purgatorius mckeeveri shown in the foreground, quickly set themselves apart from their competition -- like Based on the age of the fossils, the team estimates the archaic ungulate mammal on the forest floor -- by that the ancestor of all primates (the group specializing in an omnivorous diet including fruit found including plesiadapiforms and today's primates up in the trees. Credit: Andrey Atuchin such as lemurs, monkeys, and apes) likely emerged by the Late Cretaceous—and lived alongside large dinosaurs. Stephen Chester, an assistant professor of anthropology and paleontologist at the Graduate Center, CUNY and Brooklyn College, was part of a team of 10 researchers from across the United States who analyzed several fossils of Purgatorius, the oldest genus in a group of the earliest-known primates called plesiadapiforms.
    [Show full text]
  • Evolution of Grasping Among Anthropoids
    doi: 10.1111/j.1420-9101.2008.01582.x Evolution of grasping among anthropoids E. POUYDEBAT,* M. LAURIN, P. GORCE* & V. BELSà *Handibio, Universite´ du Sud Toulon-Var, La Garde, France Comparative Osteohistology, UMR CNRS 7179, Universite´ Pierre et Marie Curie (Paris 6), Paris, France àUMR 7179, MNHN, Paris, France Keywords: Abstract behaviour; The prevailing hypothesis about grasping in primates stipulates an evolution grasping; from power towards precision grips in hominids. The evolution of grasping is hominids; far more complex, as shown by analysis of new morphometric and behavio- palaeobiology; ural data. The latter concern the modes of food grasping in 11 species (one phylogeny; platyrrhine, nine catarrhines and humans). We show that precision grip and precision grip; thumb-lateral behaviours are linked to carpus and thumb length, whereas primates; power grasping is linked to second and third digit length. No phylogenetic variance partitioning with PVR. signal was found in the behavioural characters when using squared-change parsimony and phylogenetic eigenvector regression, but such a signal was found in morphometric characters. Our findings shed new light on previously proposed models of the evolution of grasping. Inference models suggest that Australopithecus, Oreopithecus and Proconsul used a precision grip. very old behaviour, as it occurs in anurans, crocodilians, Introduction squamates and several therian mammals (Gray, 1997; Grasping behaviour is a key activity in primates to obtain Iwaniuk & Whishaw, 2000). On the contrary, the food. The hand is used in numerous activities of manip- precision grip, in which an object is held between the ulation and locomotion and is linked to several func- distal surfaces of the thumb and the index finger, is tional adaptations (Godinot & Beard, 1993; Begun et al., usually viewed as a derived function, linked to tool use 1997; Godinot et al., 1997).
    [Show full text]
  • The History of Life 347 DO NOT EDIT--Changes Must Be Made Through “File Info” Correctionkey=A
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=A The History CHAPTER 12 of Life BIg IdEa Scientists use many types of data collection and experimentation to form hypotheses and theories about how life formed on Earth. 12.1 The Fossil Record 12.2 The geologic Time Scale 12.3 Origin of Life 9d 12.4 Early Single-Celled Organisms 7F, 7g, 11C data analysis CalcuLaTINg axes IntervaLS 2g 12.5 Radiation of Multicellular Life 7E 12.6 Primate Evolution Online BiOlOgy HMDScience.com ONLINE Labs ■■ Video Lab Model of Rock Strata ■■ Radioactive Decay ■■ QuickLab Geologic Clock ■■ Stride Inferences ■■ Understanding Geologic Time ■■ Comparing Indexes Among Primates ■■ Virtual Lab Comparing Hominoid Skulls (t) ©Silkeborg Denmark Museum, 346 Unit 4: Evolution DO NOT EDIT--Changes must be made through “File info” CorrectionKey=A Q What can fossils teach us about the past? This man, known only as Tollund Man, died about 2200 years ago in what is now Denmark. Details such as his skin and hair were preserved by the acid of the bog in which he was found. A bog is a type of wetland that accumulates peat, the deposits of dead plant material. older remains from bogs can add information to the fossil record, which tends to consist mostly of hard shells, teeth, and bones. RE a d IN g T o o L b o x This reading tool can help you learn the material in the following pages. uSINg LaNGUAGE YOuR TuRN describing Time Certain words and phrases can help Read the sentences below, and write the specific time you get an idea of a past event’s time frame (when it markers.
    [Show full text]
  • Unit 4 Resource
    UUnitnit 4 RResourcesesources History of Biological Diversity A GLENCOE PROGRAM BIOLOGY biologygmh.com Check out the following features on your Online Learning Center: Study Tools Extensions Virtual Labs Microscopy Links • Interactive Tables Periodic Table Links • Interactive Time Line Career Links • Animated illustrations Web Links • National Geographic Visualizing animations WebQuest Projects Self-Check Quizzes Science Fair Ideas Chapter Tests Internet BioLabs Standardized Test Practice Vocabulary PuzzleMaker For Teachers Interactive Tutor Teacher Forum Multilingual Science Glossary Teaching Today, and much more! Study to Go Online Student Edition Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. Copyright © Glencoe/McGraw-Hill, a division of Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Permission is granted to reproduce the material contained herein on the condition that such material be reproduced only for classroom use; be provided to students, teachers, and families without charge; and be used solely in conjunction with the Glencoe Biology program. Any other reproduction, for use or sale, is prohibited without prior written permission of the publisher. Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240-4027 ISBN 13: 978-0-07-874608-6 ISBN 10: 0-07-874608-6 Printed in the United States of America 1 2 3 4 5 6 7 8 9 10 045 11 10 09 08 07 06 Teacher Approval Initials Date of Approval Student Lab Safety Form Student Name: Date: Lab Title: In order to show your teacher that you understand the safety concerns of this lab, the following questions must be answered after the teacher explains the information to you.
    [Show full text]
  • Early Primates
    Early Primates Arboreal theory Primates became primates by adapting to life in trees Enhanced sight (depth perception) Monkey Business: Grasping hands and feet Visual predation hypothesis Evolution of Primates Binocular vision, grasping hands and feet, and reduced claws developed because they facilitated the capture of insects. Early primates first adapted to life in the bushy forest undergrowth and low tree branches. McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. Early Cenozoic Primates The earliest primates date to the first part of the Cenozoic Prosimians: “lower primates” (65-54 m.y.a.). Lemurs, loris, bushbabies, tarsiers The Eocene (54-38 m.y.a.) was the epoch of prosimians with at least 60 different genera in two families. Anthropoids: “higher primates” The omomyid family lived in North America, Europe, and New World Monkeys: marmosets, tamarins, spider monkeys Asia and may be ancestral to all anthropoids. Old World Monkeys: baboons, macaques, mandrills The adapid family was ancestral to the lemur-loris line. Homonoids: Gibbons, Pongids (Apes) and Hominids (Humans and related forms). McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. 1 Prosimians New World Monkeys tarsier lemur McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. Old World Monkeys Hominoids Lesser Apes Panids, Pongids(Great Apes) Dumb Apes (Gibbons) (Gorilla, Chimps, Orangutan) (George Bush) McGraw-Hill © 2002 by The McGraw-Hill Companies, Inc.
    [Show full text]
  • Contextualising Primate Origins – an Ecomorphological Framework
    This is the accepted version of the following article: Soligo C, Smaers JB (2016). Contextualising primate origins – an ecomorphological framework. Journal of Anatomy 228: 608–629, which has been published in final form at [http://onlinelibrary.wiley.com/doi/10.1111/joa.12441/abstract]. This article may be used for non- commercial purposes in accordance with the Wiley Self-Archiving Policy [http://olabout.wiley.com/WileyCDA/Section/id-820227.html ]. Contextualising primate origins – An ecomorphological framework Authors: Christophe Soligo1 Jeroen B Smaers2 1 Department of Anthropology, University College London, 14 Taviton Street, London WC1 0BW, UK 2 Department of Anthropology, Stony Brook University, Stony Brook, New York 11794- 4364, USA Abstract Ecomorphology–the characterisation of the adaptive relationship between an organism’s morphology and its ecological role–has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill’s Visual Predation Hypothesis, and Bob Sussman’s Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, since morphology and environmental context must first be inferred, before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species.
    [Show full text]
  • The Link Educator’S Guide
    The Link Educator’s Guide History™, together with the University of Oslo and the Senckenberg Research Institute, has announced the groundbreaking finding of a 47 million year old fossil that will revolutionize the way humans understand our link to other primates. Dr. Jorn Hurum at the University of Oslo was stunned when he discovered this amazingly intact fossil at a fair in Germany. After an examination, he confirmed that the remains of this primate are an extremely well-preserved and rare find. Knowing that this fossil, nicknamed Ida, could hold answers to the connections between humans and other primates, he quickly assembled a world-class team to carefully study the specimen. The Link follows Dr. Hurum and his team as they peel back the layers of time, revealing astonishing new information about early primates and the path to humankind by studying this remarkable 95% intact fossil. Throughout the world, scientists and archeologists are constantly searching for traces of evidence that will help explain the origins of humankind. In the 1970s, scientists pinned down the connection between apes and humans through a 3.2 million year old fossil they named Lucy. But critical questions remain about how and when humans and apes transformed from other primate species. Now, the discovery of Ida will turn much of what we know about the links between humans and primates on its head, giving us insights into the evolutionary process 44 million years before Lucy walked the Earth. Similar to a lemur, Ida has characteristics of a transitional species, tying her monkey-like species to the primates which followed her.
    [Show full text]
  • The Prime Movers in Hominid Encephalization One of the Common Misconceptions Concerning the Evolutionary Process Is That It Implies Progress
    The Prime Movers in Hominid Encephalization One of the common misconceptions concerning the evolutionary process is that it implies progress. People with such a mistaken view of evolution may believe that fish are evolving into amphibians, reptiles are evolving into mammals, and apes will inevitably achieve human status some day. The belief that traits evolve in order to achieve a future goal is referred to as the teleological error. When someone argues that birds evolved feathered wings in order to fly or that humans evolved complex brains in order to use tools they are committing the teleological error. The teleological error is a logical fallacy because it implies that future events cause past events. To understand how birds evolved bodies capable of flight, it is necessary to examine the process as a series of events unconnected to any future outcomes. Feathers were originally modified scales that provided an improved insulating capacity for warm-blooded animals. The low density of these modified scales and certain incidental aerodynamic properties they possessed made them useful in facilitating gliding behavior. Outstretched forelimbs covered with feathers were more advantageous to gliding than those covered with scales. Flight powered by feathered wings developed in birds as a result of natural selection on gliding behavior. The teleological error is even more likely to be committed when the origins of human capacities are examined. Claiming that our ancestors began walking upright in order that they could use tools is typical example of this error. In fact, the tendency to make the teleological error can be said to be a natural by-product of the evolved mental capacities of the human animal.
    [Show full text]
  • Snub-Nosed Monkey Rhinopithecus Strykeri
    Evolutionary History of the Odd-Nosed Monkeys and the Phylogenetic Position of the Newly Described Myanmar Snub-Nosed Monkey Rhinopithecus strykeri Rasmus Liedigk1, Mouyu Yang1,2, Nina G. Jablonski3, Frank Momberg4, Thomas Geissmann5, Ngwe Lwin6, Tony Htin Hla6, Zhijin Liu1,7, Bruce Wong7, Li Ming7, Long Yongcheng8, Ya-Ping Zhang9, Tilo Nadler10, Dietmar Zinner11, Christian Roos1,12* 1 Primate Genetics Laboratory, German Primate Center, Go¨ttingen, Germany, 2 Fanjingshan National Nature Reserve, Jiangkou, Guizhou Province, China, 3 Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, United States of America, 4 Fauna and Flora International (FFI), Myanmar Programme, Yangon, Myanmar, 5 Anthropological Institute, University Zu¨rich-Irchel, Zu¨rich, Switzerland, 6 Biodiversity and Nature Conservation Association (BANCA), Yangon, Myanmar, 7 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 8 The Nature Conservancy, Kunming, China, 9 Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China, 10 Frankfurt Zoological Society, Endangered Primate Rescue Center, Cuc Phuong National Park, Ninh Binh Province, Vietnam, 11 Cognitive Ethology Laboratory, German Primate Center, Go¨ttingen, Germany, 12 Gene Bank of Primates, German Primate Center, Go¨ttingen, Germany Abstract Odd-nosed monkeys represent one of the two major groups of Asian colobines. Our knowledge about this primate group is still limited as it is highlighted by the recent discovery of a new species in Northern Myanmar. Although a common origin of the group is now widely accepted, the phylogenetic relationships among its genera and species, and the biogeographic processes leading to their current distribution are largely unknown.
    [Show full text]
  • Philip D. Gingerich Margaret Schoeninger the Fossil Record
    Philip D. Gingerich The Fossil Record and Primate Phylogeny Museum of Paleontology, The University of Michigan, Fossils provide the only direct evidence of the evolutionary history Ann Arbor, Michigan 48109, of primates. A method of phylogeny reconstruction is outlined which U.S.A. is based on an evaluation ofphenetic resemblances of fossils interpreted in their stratigraphiccontext. This stratopheneti¢ approach to phylogeny involves three successive steps: (1) organization of fossils strati- Margaret Schoeninger graphically, (2) phenetie linking of similar forms from adjacent Department of Anthropology, stratigraphic intervals, (3) critical testing--Is the density and The University of Michigan, continuity of the fossil record sufficient to support the proposed Ann Arbor, Michigan 40109, linkings?--Does the proposed phylogeny make sense cladistically?-- U.S.A. Does it make sense paleogeographicaUy? Evaluation of the known fossil record of primates, following the stratophenetic approach outlined here, has suggested that micro- syopoids are primitive primates and that fossil tarsioids and ples-. iadapoids form a closely linked group. Early anthropoids link most closely with Eocene adapoids, supporting an adapoid origin of Anthropoidea. Large gaps remain in the fossil record of lemuroid and lorisoid primates: they may have been derived from an Adapis- like Eocene genus, or they may possibly have evolved independently of other primates since the late Cretaceous or the Paleocene. This question is closely related to the problem of whether living Tarsius or modern lemurs and lorises are more closely related to the living higher primates. The fossil record and the paleogeography of Central America suggest that platyrrhines eyolved from an early anthropoid stock and may have entered South America from Asia via North America at about the end of the Eocene.
    [Show full text]
  • Lesson 26.3 • Lesson Overview • Lesson Notes 765 Unifying Concepts and Processes I, II, III, IV, V
    lesson Mammals Members of the traditional class Mammalia include about 5000 species that range in size from mice to whales. Characteristics unique to mammals include mammary glands in females, which pro- Getting Started duce milk to nourish young, and hair. Mammals also breathe air, have four- chambered hearts, and regulate their internal body temperature. Primate Evolution DOL•60–DOL•64 Objectives The First Mammals True mammals first appeared during the late 26.3.1 Identify the characteristics that all primates Triassic Period, about 220 million years ago. They were very small and resembled modern tree shrews, like the one in Figure 26–13. While share. 26.3 dinosaurs ruled, mammals remained generally small and were proba- THINK ABOuT IT Carolus Linnaeus placed our species, Homo sapiens, Key Questions 26.3.2 Describe the major evolutionary groups of bly active mostly at night. New fossils and DNA analyses suggest, how- in an order he named Primates, which means “first” in Latin. But what What characteristics do all primates. ever, that the first members of modern mammalian groups, including are primates “first” in? When primates appeared, there was little to dis- primates share? primates, rodents, and hoofed mammals, evolved during this period. tinguish them from other mammals, aside from an increased ability to 26.3.3 Describe the adaptations that enabled later After the great dinosaur extinction at the end of the Cretaceous Period, What are the major hominine species to walk upright. use their eyes and front limbs together. As primates evolved, however, evolutionary groups of primates? about 65 million years ago, mammals underwent a long adaptive several other characteristics became distinctive.
    [Show full text]
  • Primate and Human Evolution Susan Cachel New York: Cambridge University Press, 2006, 469 Pp
    Primate and Human Evolution Susan Cachel New York: Cambridge University Press, 2006, 469 pp. (hardback), $130. ISBN-13: 9780521829427. Reviewed by STEPHEN LYCETT Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UNITED KINGDOM; [email protected] rimate and Human Evolution is an ambitious and broad- speciation in papionins also is discussed, although Cachel Psweeping attempt to set the issue of human evolution notes that as a general model of primate speciation (includ- firmly within the context of its catarrhine substrate, while ing hominins) such evidence tends to be contradictory to at the same time arguing that humans and their closest fos- data originating from comparison with other mammals, sil relatives are remarkably different from other primates. which suggests that parapatric speciation is more frequent- It is this essential tension that Cachel aims to explore. ly seen in mammals smaller than baboons. The second part From its title it would be easy to assume that this is a of this chapter deals with the topical issue of extinction in textbook for undergraduates. As Cachel, however, warns extant primates. Primates have the highest proportion of in the opening sentences of her preface, it is not intended endangered species amongst mammals, and Cachel draws as such, nor should be seen as a textbook. Perhaps to em- several sobering observations regarding the probable fate phasize the point still further, the opening paragraphs of of extant primates and fragmentation of their habitats. The Chapter 1 (The Primate Order) dispense with certain “con- chapter also discusses how issues such as habitat special- ventions” that a textbook format might otherwise have fol- ization, and diet and body size differentially affect extinc- lowed.
    [Show full text]