AN ABSTRACT of the THESIS of Anis S. Lestari for the Degree of Master of Science in Crop Science Presented on March 18, 2016. Ti
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Type and Distribution of Sensilla in the Antennae of the Red Clover Root Borer, Hylastinus Obscurus
Journal of Insect Science: Vol. 13 | Article 133 Palma et al. Type and distribution of sensilla in the antennae of the red clover root borer, Hylastinus obscurus Rubén Palma1,4a, Ana Mutis2b, Rufus Isaacs3c, Andrés Quiroz2d 1Doctorate Program in Sciences and Natural Resources. Universidad de La Frontera, Temuco 4811230, Araucanía, Chile 2Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Araucanía, Chile Downloaded from 3Department of Entomology, Michigan State University, East Lansing, MI 48824 4Current address: Laboratorio de Interacciones Insecto-Planta, Universidad de Talca, Talca, Chile Abstract In order to determine the type, distribution, and structures of sensilla, the antennae of the red clo- http://jinsectscience.oxfordjournals.org/ ver root borer, Hylastinus obscurus Marsham (Coleoptera: Curculionidae: Scolytinae), were examined by light and electron microscopy (both scanning and transmission). Four different types of sensilla were identified in the club, and one type of chaetica was found in the scape and funicle of both male and female individuals. Chaetica and basiconica were the most abundant sensilla types in the club. They were present in the three sensory bands described, totaling ap- proximately 80% of sensilla in the antennal club of H. obscurus. Chaetica were predominantly mechanoreceptors, although gustatory function could not be excluded. Basiconica forms showed characteristics typical of olfactory sensilla. Trichoidea were not found in the proximal sensory by guest on April 29, 2015 band, and they exhibited abundant pores, suggesting olfactory function. Styloconica were the least abundant sensillum type, and their shape was similar to that reported as having hygro- and thermoreceptor functions. There was no difference in the relative abundance of antennal sensilla between males and females. -
Effect of the Native Strain of the Predator Nesidiocoris Tenuis Reuter
Assadi et al. Egyptian Journal of Biological Pest Control (2021) 31:47 Egyptian Journal of https://doi.org/10.1186/s41938-021-00395-5 Biological Pest Control RESEARCH Open Access Effect of the native strain of the predator Nesidiocoris tenuis Reuter and the entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium against Bemisia tabaci (Genn.) under greenhouse conditions in Tunisia Besma Hamrouni Assadi1*, Sabrine Chouikhi1, Refki Ettaib1, Naima Boughalleb M’hamdi2 and Mohamed Sadok Belkadhi1 Abstract Background: The misuse of chemical insecticides has developed the phenomenon of habituation in the whitefly Bemisia tabaci (Gennadius) causing enormous economic losses under geothermal greenhouses in southern Tunisia. Results: In order to develop means of biological control appropriate to the conditions of southern Tunisia, the efficacy of the native strain of the predator Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and two entomopathogenic fungi (EPF) Beauveria bassiana and Lecanicillium muscarium was tested against Bemisia tabaci (Gennadius). Indeed, the introduction of N. tenuis in doses of 1, 2, 3, or 4 nymphs per tobacco plant infested by the whitefly led to highly significant reduction in the population of B. tabaci, than the control devoid of predator. The efficacy of N. tenuis was very high against nymphs and adults of B. tabaci at all doses per plant with a rate of 98%. Likewise, B. bassiana and L. muscarium, compared to an untreated control, showed a very significant efficacy against larvae and adults of B. tabaci. In addition, the number of live nymphs of N. tenuis treated directly or introduced on nymphs of B. tabaci treated with the EPF remained relatively high, exceeding 24.8 nymphs per cage compared to the control (28.6). -
Oregon Invasive Species Action Plan
Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions ..................................................................................................................................................... -
Studies on the Clover Root Borer
STUDIES ON THE CLOVER ROOT BORER, HYMSTINUS OBSCURUS (KARSHAM) DISSERTATION Presented in Partial FuliiIlment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By KENNETH PAUL FRUESS, B.S., M.S. The Ohio State University 1957 Approved by: Adviser Department of Zoology and Entomology ACKSQttffiCMST^TS ?he research for this dissertation was done a t the Ohio Agricultural Experiment Station, W o o s t e r , Ohio, w h e r e I was employed as a Research Assistant from June, 1 9 5 ^ j to March, 1957. I am grateful for the facilities offered t > y this instituition and for the aid of .many members of the stafr d u r i n g my s t a y there. I wish especially to thank Dr, C » -ft. Weaver, wino encouraged this research and offered many h e l p f u H suggestions and criticisms. I also wish to thank Dr, Ralph H . Davidson, w h o acted as n y adviser at The Ohio State University a n d directed m y work there. Valuable information was supplied t y the f ol lowing persons a m is gratefully acknowledged: Mr. A, Dickason, Oregon State College; Dr, Ray T, Everly, Purdue University,* Dr. G-eorge G. Gyrisco and Mr, Carlton S, Koehler, C o r n e l l University; and Dr, A. K. Woodside, Virginia Agricultural Experiment Sts/tion. ii TABLE OF CON TENTS Page INTRODUCTION ........ 1 PART I. THE CLOVER ROOT BORER ................... 2 Taxonomic Position ................... -
Arizona Administrative Code Between the Dates of October 1, 2020 Through December 31, 2020 (Supp
3 A.A.C. 4 Supp. 20-4 December 31, 2020 Title 3 TITLE 3. AGRICULTURE CHAPTER 4. DEPARTMENT OF AGRICULTURE - PLANT SERVICES DIVISION The table of contents on the first page contains quick links to the referenced page numbers in this Chapter. Refer to the notes at the end of a Section to learn about the history of a rule as it was published in the Arizona Administrative Register. Sections, Parts, Exhibits, Tables or Appendices codified in this supplement. The list provided contains quick links to the updated rules. This Chapter contains rule Sections that were filed to be codified in the Arizona Administrative Code between the dates of October 1, 2020 through December 31, 2020 (Supp. 20-4). Table 1. Fee Schedule ......................................................47 Questions about these rules? Contact: Name: Brian McGrew Address: Department of Agriculture 1688 W. Adams St. Phoenix, AZ 85007 Telephone: (602) 542-3228 Fax: (602) 542-1004 E-mail: [email protected] Website: https://agriculture.az.gov/plantsproduce/industrial- hemp-program The release of this Chapter in Supp. 20-4 replaces Supp. 20-3, 1-50 pages Please note that the Chapter you are about to replace may have rules still in effect after the publication date of this supplement. Therefore, all superseded material should be retained in a separate binder and archived for future reference. i PREFACE Under Arizona law, the Department of State, Office of the Secretary of State (Office), accepts state agency rule filings and is the publisher of Arizona rules. The Office of the Secretary of State does not interpret or enforce rules in the Administrative Code. -
The Mitochondrial Genome of the Grape Powdery Mildew Pathogen Erysiphe Necator Is Intron Rich and Exhibits a Distinct Gene Organization Alex Z
www.nature.com/scientificreports OPEN The mitochondrial genome of the grape powdery mildew pathogen Erysiphe necator is intron rich and exhibits a distinct gene organization Alex Z. Zaccaron1, Jorge T. De Souza1,2 & Ioannis Stergiopoulos1* Powdery mildews are notorious fungal plant pathogens but only limited information exists on their genomes. Here we present the mitochondrial genome of the grape powdery mildew fungus Erysiphe necator and a high-quality mitochondrial gene annotation generated through cloning and Sanger sequencing of full-length cDNA clones. The E. necator mitochondrial genome consists of a circular DNA sequence of 188,577 bp that harbors a core set of 14 protein-coding genes that are typically present in fungal mitochondrial genomes, along with genes encoding the small and large ribosomal subunits, a ribosomal protein S3, and 25 mitochondrial-encoded transfer RNAs (mt-tRNAs). Interestingly, it also exhibits a distinct gene organization with atypical bicistronic-like expression of the nad4L/nad5 and atp6/nad3 gene pairs, and contains a large number of 70 introns, making it one of the richest in introns mitochondrial genomes among fungi. Sixty-four intronic ORFs were also found, most of which encoded homing endonucleases of the LAGLIDADG or GIY-YIG families. Further comparative analysis of fve E. necator isolates revealed 203 polymorphic sites, but only fve were located within exons of the core mitochondrial genes. These results provide insights into the organization of mitochondrial genomes of powdery mildews and represent valuable resources for population genetic and evolutionary studies. Erysiphe necator (syn. Uncinula necator) is an obligate biotrophic ascomycete fungus that belongs to the Ery- siphaceae family (Leotiomycetes; Erysiphales) and causes grape powdery mildew, one of the most widespread and destructive fungal diseases in vineyards across the world1. -
Fungi and Their Potential As Biological Control Agents of Beech Bark Disease
Fungi and their potential as biological control agents of Beech Bark Disease By Sarah Elizabeth Thomas A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Royal Holloway, University of London 2014 1 DECLARATION OF AUTHORSHIP I, Sarah Elizabeth Thomas, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: _____________ Date: 4th May 2014 2 ABSTRACT Beech bark disease (BBD) is an invasive insect and pathogen disease complex that is currently devastating American beech (Fagus grandifolia) in North America. The disease complex consists of the sap-sucking scale insect, Cryptococcus fagisuga and sequential attack by Neonectria fungi (principally Neonectria faginata). The scale insect is not native to North America and is thought to have been introduced there on seedlings of F. sylvatica from Europe. Conventional control strategies are of limited efficacy in forestry systems and removal of heavily infested trees is the only successful method to reduce the spread of the disease. However, an alternative strategy could be the use of biological control, using fungi. Fungal endophytes and/or entomopathogenic fungi (EPF) could have potential for both the insect and fungal components of this highly invasive disease. Over 600 endophytes were isolated from healthy stems of F. sylvatica and 13 EPF were isolated from C. fagisuga cadavers in its centre of origin. A selection of these isolates was screened in vitro for their suitability as biological control agents. Two Beauveria and two Lecanicillium isolates were assessed for their suitability as biological control agents for C. -
Lecanicillium Fungicola 150-1, the Causal Agent of Dry Bubble Disease Downloaded From
GENOME SEQUENCES crossm Genome Sequence of Lecanicillium fungicola 150-1, the Causal Agent of Dry Bubble Disease Downloaded from Alice M. Banks,a* Farhana Aminuddin,a Katherine Williams,a Thomas Batstone,a Gary L. A. Barker,a Gary D. Foster,a Andy M. Baileya aSchool of Biological Sciences, University of Bristol, Bristol, United Kingdom ABSTRACT The fungus Lecanicillium fungicola causes dry bubble disease in the http://mra.asm.org/ white button mushroom Agaricus bisporus. Control strategies are limited, as both the host and pathogen are fungi, and there is limited understanding of the interac- tions in this pathosystem. Here, we present the genome sequence of Lecanicillium fungicola strain 150-1. ecanicillium fungicola (Preuss) Zare & Gams [synonym: Verticillium fungicola (Preuss) LHassebrauk] (1), an ascomycete fungus of the order Hypocreales, is the causal agent of dry bubble disease of the white button mushroom Agaricus bisporus, as well as of on September 18, 2020 at Imperial College London other commercially cultivated basidiomycetes (2). Dry bubble disease presents symp- toms that include necrotic lesions on mushroom caps, stipe blowout, and undifferen- tiated tissue masses (2). Some factors involved in this interaction have been proposed based on suppression subtractive hybridization (SSH) and expressed sequence tag (EST) data (3). This disease is of economic importance, causing significant yield/quality losses in the mushroom industry (4). Control methods rely on rigorous hygiene procedures and targeted fungicide treatments; however, increased resistance against these fungi- cides has been reported (5, 6). Recent taxonomic revisions place L. fungicola close to several arthropod- and nematode-pathogenic fungi rather than to plant-pathogenic Verticillium spp. -
2011 Biodiversity Snapshot. Isle of Man Appendices
UK Overseas Territories and Crown Dependencies: 2011 Biodiversity snapshot. Isle of Man: Appendices. Author: Elizabeth Charter Principal Biodiversity Officer (Strategy and Advocacy). Department of Environment, Food and Agriculture, Isle of man. More information available at: www.gov.im/defa/ This section includes a series of appendices that provide additional information relating to that provided in the Isle of Man chapter of the publication: UK Overseas Territories and Crown Dependencies: 2011 Biodiversity snapshot. All information relating to the Isle or Man is available at http://jncc.defra.gov.uk/page-5819 The entire publication is available for download at http://jncc.defra.gov.uk/page-5821 1 Table of Contents Appendix 1: Multilateral Environmental Agreements ..................................................................... 3 Appendix 2 National Wildife Legislation ......................................................................................... 5 Appendix 3: Protected Areas .......................................................................................................... 6 Appendix 4: Institutional Arrangements ........................................................................................ 10 Appendix 5: Research priorities .................................................................................................... 13 Appendix 6 Ecosystem/habitats ................................................................................................... 14 Appendix 7: Species .................................................................................................................... -
Review of the Coverage of Urban Habitats and Species Within the UK Biodiversity Action Plan
Report Number 651 Review of the coverage of urban habitats and species within the UK Biodiversity Action Plan English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 651 Review of the coverage of urban habitats and species within the UK Biodiversity Action Plan Dr Graham Tucker Dr Hilary Ash Colin Plant Environmental Impacts Team You may reproduce as many additional copies of this report as you like, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA ISSN 0967-876X © Copyright English Nature 2005 Acknowledgements The project was managed by David Knight of English Nature, and we thank him for his advice and assistance. Thanks are also due to Mark Crick and Ian Strachan of JNCC for their comments on the draft report and information on the current UKBAP review, and English Nature library staff for their invaluable assistance with obtaining reference materials. We especially thank the following individuals and their organisations for their valuable comments on the consultation draft of this report: George Barker, John Box, Professor Tony Bradshaw, John Buckley (The Herpetological Trust), Paul Chanin (for The Mammal Society), John Davis (Butterfly Conservation), Mike Eyre, Tony Gent (The Herpetological Conservation Trust), Chris Gibson (English Nature), Eric Greenwood, Phil Grice (English Nature), Mathew Frith, Nick Moyes, John Newbold (for The National Federation of Biological Recorders), Dominic Price (Plantlife), Alison Rasey (The Bat Conservation Trust), Ian Rotherham (Sheffield University), Richard Scott (Landlife), Martin Wigginton and Robin Wynde (RSPB). Additional information and advice was also provided by Dan Chamberlain, Rob Robinson, and Juliet Vickery (British Trust for Ornithology) and Will Peach (RSPB). -
A 1969 Supplement
Supplement to Raudabaugh et al. (2021) – Aquat Microb Ecol 86: 191–207 – https://doi.org/10.3354/ame01969 Table S1. Presumptive OTU and culture taxonomic match and distribution. Streams1 Peatlands1 Culture Phylum Class OTU Taxonomic determination HC NP PR BB TV BM Ascomycota Archaeorhizomycetes Archaeorhizomyces sp. X X X X X Ascomycota Arthoniomycetes X X Arthothelium spectabile X Ascomycota Dothideomycetes Allophoma sp. X X Alternaria alternata X X X X X X Alternaria sp. X X X X X X Ampelomyces quisqualis X Ascochyta medicaginicola var. X macrospora Aureobasidium pullulans X X X X Aureobasidium thailandense X X Barriopsis fusca X Biatriospora mackinnonii X X Bipolaris zeicola X X Boeremia exigua X X Boeremia exigua X Calyptrozyma sp. X Capnobotryella renispora X X X X Capnodium sp.. X Cenococcum geophilum X X X X Cercospora sp. X Cladosporium cladosporioides X Cladosporium dominicanum X X X X Cladosporium iridis X Cladosporium oxysporum X X X Cladosporium perangustum X Cladosporium sp. X X X Coniothyrium carteri X Coniothyrium fuckelii X 1 Supplement to Raudabaugh et al. (2021) – Aquat Microb Ecol 86: 191–207 – https://doi.org/10.3354/ame01969 Streams1 Peatlands1 Culture Phylum Class OTU Taxonomic determination HC NP PR BB TV BM Ascomycota Dothideomycetes Coniothyrium pyrinum X Coniothyrium sp. X Curvularia hawaiiensis X Curvularia inaequalis X Curvularia intermedia X Curvularia trifolii X X X X Cylindrosympodium lauri X Dendryphiella sp. X Devriesia pseudoamerica X X Devriesia sp. X X X Devriesia strelitziicola X Didymella bellidis X X X Didymella boeremae X Didymella sp. X X X Diplodia X Dothiorella sp. X X Endoconidioma populi X X Epicoccum nigrum X X X X X X X Epicoccum plurivorum X X X Exserohilum pedicellatum X Fusicladium effusum X Fusicladium sp. -
Biocontrol Fungi in Reducing the Population Density Of
G.J.B.A.H.S.,Vol.3(3):246-251 (July-September, 2014) ISSN: 2319 – 5584 BIOCONTROL FUNGI IN REDUCING THE POPULATION DENSITY OF THE COTTON WHITE FLY ON COWPEAS *Hadi Alwan Mohammed Alsaidy¹, Nuhad Asis Alumairy², Firyal Bahjet ³, Hussain Ali Alanbugy⁴ ¹’²,Departement of Animal Resources. Colloge of Agriculture. University of Diyala. Baquba. IRAQ, ³Dep.of plant protection. Colloge of Agric.Univ. of Baghdad., 4Dep. Of Soil. Colloge of Agric. Univ. of Diyala. *Corresponding Author ABSTRACT This study was conducted for the period from April to June 2013 in the village of Mouradia - Diyala Province / Iraq, to study the effect of isolation fungus Beauveria bassiana (BSA3) Carried on the Millet seeds in concentration 1 × 10⁸ and the commercial product Mycotal’s fungus Licanecillium muscarium concentration of 1 × 10⁷ And bio-pesticide Spinosad utilization rate 0.25 ml / l and the pesticide chemical Hatchi hatchi in reducing the population density of nymphs and adults whitefly Bemisia tabaci, the commercial product Mycotal Excelled significant differences on treatments in other biological treatments reduce the population density of whitefly nymphs with 63%, followed by treatment Spinosad and pathogenic fungus B. bassiana 52% and 44.67%, respectively. And the results show the effect of the treatments in the number of whitefly adults of B. tabaci, where all treatments excelled significantly on the comparison treatment. Also the treatment of the commercial product Mycotal affected in reducing the density of whitefly adults 53%, which significantly excelled on the Spinosad treatment 48.73%, followed by fungus B. bassiana (BSA3) treatment 32.1%. The study proved that the spraying of these pesticides to once may be enough in reducing the community to the extent of pest ambition.