G-Tran Series Sensor Unit Model Sc1 Cold-Cathode Ion

Total Page:16

File Type:pdf, Size:1020Kb

G-Tran Series Sensor Unit Model Sc1 Cold-Cathode Ion No. SK00-8431-EI-023-03 G-TRAN SERIES SENSOR UNIT MODEL SC1 COLD-CATHODE ION GAUGE INSTRUCTION MANUAL This manual is for the SC1 cold-cathode ion gauges of the following serial numbers. Serial No. 02300G and higher Read this manual before operation and keep it at hand for immediate reference. Components Division, ULVAC , Inc. 2500 Hagizono, Chigasaki City, Kanagawa-ken, Japan http://www.ulvac.co.jp/ Prior to Operation Upon receipt of this gauge, make sure that it is the correct model you ordered and that it is not damaged in transit. Read this instruction manual before installing, operating, inspecting, or maintaining the product and fully understand the safety precautions, specifications and operating procedures regarding the product. The copyright of this instruction manual is held by ULVAC, Inc. You are prohibited from copying any portion of this instruction manual without the consent of ULVAC Inc. You are also prohibited from disclosing or transferring this instruction manual to third parties without the express written consent of ULVAC Inc. The contents described in this instruction manual are subject to change without prior notice because of changes in specifications or because of product improvements. Safety Denotations Safety symbols are used throughout this instruction manual to call the operator's attention to safety. The terminology used in safety symbols is classified below. Indicate status of urgency of danger when failure to comply with DANGER results in serious personal injury or death The work ignoring this warning will lead to serious damage to human life or factory facility (including this equipment) at a high probability. Indicate status of danger when failure to comply with WARNING results in serious worker’s injury or death. The work ignoring this warning will cause possibility leading to serious damage to human life or factory facility (including this equipment) Indicate status of danger when failure to comply with WARNING results in minor injury or moderate damage. The work ignoring this warning will cause possibility leading to minor damage to worker or breakage to equipment or necessary to adjust. Direct hazard is not existed, describe the necessity to know ✔ Note from the viewpoint of worker’s safety or correct and safe operation of equipment I Safety Precautions For safe use of this vacuum gauge, carefully read this manual and comply with the safety precautions given in this manual. Repair Request repairs for this unit from the dealer where purchased, from ULVAC Inc., or from the URL listed in this instruction manual. Power off If this unit is accidentally damaged, immediately turn off the power supply. There is a risk of fire and electric shock from use in this state. Power off If this unit produces unusual heat, smoke, or a strange smell, immediately turn off the power supply. There is a risk of fire from use in this state. Turn off power. Turn off the power to the vacuum gauge before conducting maintenance. The anode of the sensor head is energized with a voltage of 2.6 kV DC. You may receive electric shock if you touch it. Protective grounding Always connect this unit electrically to a grounded vacuum chamber. Use a conductive metal clamp on the NW flange. If this unit is not correctly connected, it will not only show the wrong pressure, there is a risk of damage to this unit and the equipment connected to this unit and a risk of fire. When this unit is insulated from the vacuum chamber, ground the case section (D-sub connector shell section) with a class D (class 3) ground. Don't disassemble. Do not disassemble the vacuum gauge. Don't modify. Do not modify the vacuum gauge. If it is modified, its functions are not warranted. Also fire or electric shock may result. Operating environment Do not connect the sensor head to a test object in which pressure is in excess of atmospheric pressure. If the pressure in the sensor head exceeds atmospheric pressure, the sensor head will be damaged or it will pop out from the connector, causing injury to the surrounding, including human body. If the pressure exceeds atmospheric pressure, provide an isolation valve so that the pressure in the sensor head does not exceed atmospheric pressure. Use in a corrosive gas atmosphere If this unit is exposed to chemically active gases including corrosive gases and halogen or halogenated gases, problems will occur such as pressure characteristics changing. When using this unit in these types of environments, install an isolation valve between this unit and the vacuum chamber and protect this unit as much as possible so it is not exposed to these gases. II Use in a CVD gas atmosphere If this unit is exposed to gases that deposit materials including CVD (Chemical Vapor Deposition) material gases and rotary pump oil mist, problems will occur such as pressure characteristics changing. When using this unit in these types of environments, install an isolation valve between this unit and the vacuum chamber and protect this unit so it is not exposed to these gases. Moisture and fouling If there is a large quantity of fouling in the gauge head from the gradual vaporization of moisture or organic matter, pressure accuracy and response speed will be affected. Review installation locations and methods so that fouling does not occur. Gas type dependency The pressure value and accuracy for this unit differ by the type of gas measured. The accuracy for this unit is based on measuring nitrogen gas. Be careful when using gases other than nitrogen. Check line voltage. Prior to turning ON the power, make sure that the vacuum gauge operating voltage and the supply voltage are in agreement. Connection of incorrect power can damage the vacuum gauge and cause fire. Shut off power If there is a possibility of the operator touching the anode terminal of the sensor head during operation, shut off the power. The anode terminal of the sensor head is energized with a discharge voltage of 2.6 kV DC. If you touch it when this gauge is actuated, you will get electric shock. Operating environment Do not use the gauge in a place where it may be splashed with water. If wetted, it may fail or electric leak or fire can result. Keep out foreign matter. If foreign matter like metal fragments or combustibles are admitted into the vacuum gauge through the openings in the gauge, remove them. Also keep intact the connecting terminals at the top of the gauge. Otherwise, the vacuum gauge may be damaged. Beware of magnetic field The magnetic flux density at the center of the sensor head is about 0.1 T. It will be attracted by or attract a metal part nearby with high magnetic force. Be careful in maintenance that a screwdriver or a metal part will be attracted with high magnetic force. Check connection. See to it that the power cable does not come into contact with other conducting parts. Discarding When you discard a vacuum gauge, please process according to the regulations of each local government. Especially the sensor head that used it in the atmosphere which may exert danger on a human body needs to process through a special processing contractor. Operating conditions Use this vacuum gauge in the environment set forth by the specifications. III Repacking for transfer If the vacuum gauge is to be shipped to other site, repack it in the same way as on delivery. If the gauge is shipped bare, it may be damaged. Warning for Air transportation Packaging The sensor for this product contains strong magnetic material. Therefore, please seal the interior of the packaging material with metal plate (more than 0.5mm thickness). The magnetic force from the item packaged by above method is less than .418A/m(0.00525gauss) at 4.6m distance from any given point, or less than 0.159A/m(0.002gauss) at 2.1m distance from any given point, qualifying IATA packaging standard 902 or UN-2807. Wear clean gloves. Handle the internal electrode with clean gloves. If the internal electrode is stained with oil or contaminant, the pressure indication may be affected by outgas. Impact to the anode pin and glass part. Such an impact may cause leak. Do not bend the anode pin nor give an impact to the black glass portion. Do not polish the glass portion of the anode. Polishing can cause leak. Polish the pin using care not to apply load on the glass portion. Insulation resistance of anode The pressure indication may be abnormal (higher than actual or no change of indication) or components may fail if the insulation resistance of the anode is not higher than 10,000 MΩ. Check center axis of anode After reassembly, make sure that the anode pin is at the center of the magnetic pole 2. There is a possibility of contact with the magnetic pole or low pressure indication. Scar and dust on O-ring and O-ring groove These can cause leak. Make sure that the O-rings and the O-ring groove are free of scars and dust. Dry parts After cleaning, dry up electrode parts. If they are not dry, components may be damaged by poor insulation. Do not touch the sensor head Do not touch the sensor head and anode during insulation resistance check. If the anode and sensor head body are shorted, a high voltage of 2.6 V DC will be applied to the sensor head. Do not conduct inspection in combustible gas atmosphere. When turning on the high voltage to this gauge under atmospheric pressure, avoid a combustible gas atmosphere. If a higher voltage of about 2.6 kV DC is applied, sparks will be produced and may cause fire.
Recommended publications
  • CATHODE LIGHT STRIP Single-Lamp Modular Cold Cathode Fluorescent Fixture • Model CLS
    CATHODE LIGHT STRIP Single-Lamp Modular Cold Cathode Fluorescent Fixture • Model CLS U.S. and international patents pending. Conference Room, Anadarko Petroleum Photo: Eric Long Washington, DC Architect: Davis Carter Scott © 2002 Cathode Lighting Systems Inc. 8020 Queenair Drive, Gaithersburg, MD 20879 • ph: 301 921 4120 • fax: 301 963 3050 e-mail: [email protected] • website: www.CathodeLightingSystems.com INALLY, THE LOOK OF A CUSTOM COLD CATHODE INSTALLATION IN AN OFF- FTHE-SHELF MODULAR SYSTEM. OUR ARCHITECTURAL-GRADE COLD CATHODE FIXTURE MAKES DESIGNING SEAMLESS SPECIAL EFFECTS LIGHTING EASIER THAN EVER. LAMPS ARE ILLUMINATED FROM END TO END, CREATING TRUE SHADOWLESS LINEAR FLUORESCENT LIGHT. STANDARD INTEGRAL DIMMING BALLASTS, SIMPLE INSTALLATION, AND A LAMP LIFE OF 50,000 HOURS MAKE CATHODE LIGHT STRIP THE CLEAR CHOICE WHEN THE HIGHEST-QUALITY LONG-LIFE LIGHTING EFFECTS ARE REQUIRED. CATHODE LIGHT STRIP, PERFECT ELEGANCE WAS NEVER SO EASY. Model CLS-4 shown equipped with a warm white (30TC) lamp. FEATURES: • SEAMLESS ILLUMINATION: Lamp illumination is • DIMMABLE: Fixtures are supplied standard with integral complete, from end to end, with no dark spots or socket dimmable ballasts. shadow. • ALL FIXTURES DIM AT THE SAME RATE: Cathode Light • ULTRA-LONG LAMP LIFE: The cold cathode lamp has Strip has been engineered to dim evenly from fixture to a life of 50,000 hours +. fixture, regardless of length or combinations of differing • LOW PROFILE: Just 2 5/8" wide and 3 1/2" tall, much lengths. smaller than traditional custom cold cathode. • STREAMLINED AND LIGHTWEIGHT: Fixtures are • AVAILABLE IN A VARIETY OF LENGTHS: With eight made from satin anodized architectural-grade, snap-fit standard sizes available, fixtures can be combined or aluminum extrusion.
    [Show full text]
  • MP1010B Cold Cathode Fluorescent Lamp Driver the Future of Analog IC Technology
    MP1010B Cold Cathode Fluorescent Lamp Driver The Future of Analog IC Technology DESCRIPTION FEATURES The MP1010B is a power solution IC that offers • Integrated Power Switches a true complete solution for driving a Cold • 6.0V to 23V Variable Supply Voltage with Cathode Fluorescent Lamps (CCFL). This Regulated Lamp Current. Power IC converts unregulated DC voltage to a • Rated 12W Power Output at 12V Input nearly pure sine wave required to ignite and • Open Lamp Regulation operate the CCFL. Based on proprietary power • Current and Voltage Feedback Control topology and control techniques it greatly • Logic Level Burst Mode Control increases the power conversion efficiency. • Supports Open/Short Lamp Protection EVALUATION BOARD REFERENCE • Soft-Start Board Number Dimensions • Short Circuit Protected Output • High Energy Start Pulse EV1010B-00A 3.75”X x 0.4”Y x 0.25”Z • Analog and Burst Mode Dimming APPLICATIONS • LCD Backlight Inverter for Notebook Computers • Web Pads, GPS, Desktop Displays, Portable DVD, Car Video Display Systems “MPS” and “The Future of Analog IC Technology” are Registered Trademarks of Monolithic Power Systems, Inc. The MP1010B is covered by US Patents 6,633,138, 6,316,881, 6,114,814. TYPICAL APPLICATION Rs Cft2 Rdamp Cft1 Cref N1 CbaR Ccomp CbtR Rft Cp N/A 20 19 18 17 16 15 14 13 12 11 HV IN FT FB OL 2 REF BSTR OUTR PGND AGND COMP Rbosc 1 MP1010B T1 CN1 BR IL BOS T/B EN DR IN OUTL PGND BSTL 1 2 3 4 5 6 7 8 9 J1 10 ABRT 5 Rabr Cabr CbtL DBRT 4 Cdrv Rbdr EN 3 Cisb Ren1 N/A Cs1 Cs2 Rlfb Resd Cen Cdbr Rbleed Ren2 CbaL Cbosc Risb Csfb Rsfb GND 2 Cba2 F1 / 1A Cba1 VBATT 1 FUSE MP1010B Rev.
    [Show full text]
  • Letter Circular 817: Fluorescent Lamps
    . RPT : RMC U. S. DEPARTMENT OF COMMERCE Letter IV- 3 NATIONAL BUREAU OF STANDARDS Circular WASHINGTON 25 LC-817 ‘February 4, 1946 ^^(Sup^geding FLUORESCENT LAMPS Contents^" - O* _ , Page I. Introduction . ........ jg*,. ..... 1 II. Work of the National Bureau- of, Standards on Fluorescent Lamps ...... .X ........ 4 III. Description of the . Lamp\ . ^ 4 IV. General Information .... ...... 3 V. Does the Fluorescent Lamp Have Any Deleterious Effect on Vision or the Eye? 4 VI. Bibliography .......... 6 I . Introduction The development of fluorescent lamps and their possibilities for general and decorative lighting purposes have brought many requests for information to the Bureau. This letter circular has been prepared to answer such inquiries. It contains information which has been accumulated in answering these letters, but is not an exhaustive treatise on the subject. II Work of the National Bureau of Standards on Fluorescent Lamps. , The development of fluorescent lamps by their manufacturers is progressing so rapidly that, although the Bureau has studied the radiation from these lamps, as discussed in Section V, it has as yet made no extensive tests to compare the efficiencies or costs of operation of fluorescent and incandescent lamps. Such information is given by the manufacturers and is referred to below. A letter circular on Fluorescence and Phosphorescence, LC-550, was issued by the Bureau under date of April 1, 1939; it is available, without cost, upon written request. Ill Description of Lamps The most commonly used type of fluorescent lamp is made in the form of a tubular bulb with a filament- type electrode sealed in each end.
    [Show full text]
  • INFORMATION CIRCULAR Original: ENGLISH (Unofficial Electronic Edition) ______
    INF INFCIRC/254/Rev.3/Part 2*/ 24 February 1998 International Atomic Energy Agency GENERAL Distr. INFORMATION CIRCULAR Original: ENGLISH (Unofficial electronic edition) ___________________________________________________________________________ COMMUNICATION RECEIVED FROM CERTAIN MEMBER STATES REGARDING GUIDELINES FOR THE EXPORT OF NUCLEAR MATERIAL, EQUIPMENT AND TECHNOLOGY Nuclear-related Dual-use Transfers 1. The Director General has received notes verbales dated 30 September 1997 from the Resident Representatives to the Agency of Argentina, Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, New Zealand, Norway, Poland, Portugal, Romania, the Russian Federation, the Slovak Republic, South Africa, Spain, Sweden, Switzerland, Ukraine, the United Kingdom of Great Britain and Northern Ireland, and the United States of America relating to the export of nuclear material, equipment and technology. 2. The purpose of the notes verbales is to provide further information about the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology in accordance with which the relevant Governments act. 3. In the light of the wish expressed at the end of each note verbale, the text of the notes verbales is attached. The attachment to these notes verbales is also reproduced in full. _____________________ */ INFCIRC/254/Rev.3/Part 1 contains Guidelines for Nuclear Transfers ANNEX NOTE VERBALE The Permanent Mission of [Member State] presents its compliments to the Director General of the International Atomic Energy Agency and has the honour to refer to its [relevant previous communication(s)] concerning the decision of the Government of [Member State] to act in accordance with the Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material and Related Technology currently published as document INFCIRC/254/Rev.2/Part 2/MOD.
    [Show full text]
  • Mercury in Cold Cathode Fluorescent Lamps for General Lighting Purposes (Category 5)
    EUROPEAN COMMISSION DIRECTORATE-GENERAL ENVIRONMENT Directorate G - Sustainable Development and Integration ENV.G.4 - Sustainable Production & Consumption DIRECTIVE 2011/65/EU1 ON THE RESTRICTION OF THE USE OF CERTAIN HAZARDOUS SUBSTANCES IN ELECTRICAL AND ELECTRONIC EQUIPMENT (ROHS). REQUESTS FOR ADDITIONAL EXEMPTION PROPOSALS FOR FURTHER EXEMPTIONS FROM THE REQUIREMENTS OF ARTICLE 4(1) OF DIRECTIVE 2011/65/EU FOR SPECIFIC APPLICATIONS OF LEAD, MERCURY, CADMIUM, HEXAVALENT CHROMIUM. Mercury in cold cathode fluorescent lamps for general lighting purposes (Category 5). Submitted by: ANIE Federazione with one of its federated associations - Associazione Nazionale Produttori Illuminazione ANIE Federazione represents the electrotechnical and electronic companies operating in Italy. With its 10 Associations, ANIE unites strategic players to deliver significant support to the growth of the national industry network and to contribute to its success on international markets. The Federation promotes the competitiveness of member companies with reference to different production factors. It maintains relations with Italian and international authorities and institutions to protect the sector’s interests. Information: Criteria Please provide supporting technical and scientific evidence a) Name address and contact ANIE Federazione details of the applicant; Via Vincenzo Lancetti, 43 20158 Milano, Italy Phone: +39 02.3264.317 Fax: +39 02.3264.212 b) Information on the material or Specific constructional characteristics for CCFLs for General component and the specific Lighting purposes: uses of the substance in the 1 OJ L 174, 1.7.2011, p. 88 1 Information: Criteria Please provide supporting technical and scientific evidence material and component for 1. Dimensions: Lamps often are made to follow the profile of which an exemption, or its the building / room structure and this imply that lamps will revocation, is requested and its have specific (and not standard) rounded curves (also with particular characteristics; small radius) on every geometrical axe.
    [Show full text]
  • Light-Emitting Diode - Wikipedia, the Free Encyclopedia
    Light-emitting diode - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Light-emitting_diode From Wikipedia, the free encyclopedia A light-emitting diode (LED) (pronounced /ˌɛl iː ˈdiː/[1]) is a semiconductor Light-emitting diode light source. LEDs are used as indicator lamps in many devices, and are increasingly used for lighting. Introduced as a practical electronic component in 1962,[2] early LEDs emitted low-intensity red light, but modern versions are available across the visible, ultraviolet and infrared wavelengths, with very high brightness. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of Red, green and blue LEDs of the 5mm type 2 the semiconductor. An LED is usually small in area (less than 1 mm ), and Type Passive, optoelectronic integrated optical components are used to shape its radiation pattern and assist in reflection.[3] LEDs present many advantages over incandescent light sources Working principle Electroluminescence including lower energy consumption, longer lifetime, improved robustness, Invented Nick Holonyak Jr. (1962) smaller size, faster switching, and greater durability and reliability. LEDs powerful enough for room lighting are relatively expensive and require more Electronic symbol precise current and heat management than compact fluorescent lamp sources of comparable output. Pin configuration Anode and Cathode Light-emitting diodes are used in applications as diverse as replacements for aviation lighting, automotive lighting (particularly indicators) and in traffic signals.
    [Show full text]
  • Vacuum Capacitor
    (19) & (11) EP 2 477 200 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 18.07.2012 Bulletin 2012/29 H01G 4/20 (2006.01) (21) Application number: 10815684.5 (86) International application number: PCT/RU2010/000496 (22) Date of filing: 09.09.2010 (87) International publication number: WO 2011/031189 (17.03.2011 Gazette 2011/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Kholoshenko, Roman Stanislavovich GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Rostovskaya obl. 346300 (RU) PL PT RO SE SI SK SM TR • Kovalenko, Gennady Viktorovich Rostovskaya obl. 347913 (RU) (30) Priority: 10.09.2009 RU 2009133830 • Nikolaeva Ljudmila Alexandrovna (71) Applicants: Krasnodarsky krai 352140 (RU) • Kholoshenko, Roman Stanislavovich • Korsun, Ilya Vladimirovich Rostovskaya obl. 346300 (RU) Rostovskaya obl. 347382 (RU) • Kovalenko, Gennady Viktorovich Rostovskaya obl. 347913 (RU) (74) Representative: Hersina, Günter • Nikolaeva Schoppe, Zimmermann, Stoeckeler & Zinkler Ljudmila Alexandrovna Postfach 246 Krasnodarsky krai 352140 (RU) 82043 Pullach (DE) • Korsun, Ilya Vladimirovich Rostovskaya obl. 347382 (RU) (54) VACUUM CAPACITOR (57) The invention relates to the field of electrical en- gineering, in particular to electrotechnical components, and in this specific case to polar capacitors with a fixed capacitance. The technical result of the use of the inven- tion consists in the possibility of producing electrical en- ergy stores with small dimensions and high capacitance and voltages. The vacuum capacitor comprises an anode arranged outside a vacuum chamber, in which a cathode is arranged as well as a dielectric, between said cathode and anode.
    [Show full text]
  • TCP 46112 Catalog
    2010 Fall/Winter Catalog LAMPS & BALLASTS CFLs GU24 Base Lamps Cold Cathodes LEDs HID Lamps Linear Lamps & Ballasts ONLY the BEST ONLY TCP As we near the end of one of the most dynamic years that I have ever experienced in the lighting industry, I want to thank all of TCP’s associates, customers and friends for helping us to weather the storm that swept through our economy this past year. With everyone’s drive and determination, TCP was able to regroup and forge ahead. Despite the many challenges in 2009, TCP has managed to: Improve inventory availability Reduce lead times Launch several innovative products Improve service levels All of which have strengthened its position in the marketplace. I am excited as we near the end of 2009, ready to embark on a brand new year. I believe 2010 will be the best yet for TCP! We will continue to solidify our metrics and improve in all areas that we can. Our product development team is working on more innovations to launch in 2010, and with the brightening financial outlook, TCP is poised to continue to lead the industry in the upcoming year. I look forward to working with you in 2010. Experience TCP’s energy efficient lighting products, and you will believe. Our expertise is energy efficient lighting – our passion is our customers. Sincerely, 2010 Ellis Yan CEO, TCP, Inc. LAMPS Fall/Winter Catalog Fall/Winter & BALLASTS ONLY TCP TCP is committed to providing high quality CFLs that are the benchmark in energy efficiency. TCP’s compact fluorescent light bulbs use 75% less energy than standard incandescent bulbs and last up to 10 times longer.
    [Show full text]
  • Pfeiffer PKR 251 Active Pirani Cold Cathode
    Operating Instructions Compact FullRange™ Gauge FPM sealed PKR 251 BG 805 155 BE / C (2008-04) 1 Contents Product Identification 3 Validity 3 Intended Use 3 Functional Principle 3 1 Safety 4 1.1 Symbols Used 4 1.2 Personnel Qualifications 4 1.3 Safety Information 4 1.4 Liability and Warranty 5 2 Technical Data 6 3 Installation 9 3.1 Installation 9 3.1.1 Removing the Magnet Unit (Only for Gauges With CF Flanges) 10 3.2 Electrical Connection 11 3.2.1 Use With a Pfeiffer Vacuum Measurement Unit 11 3.2.2 Use With Another Evaluation Unit 11 4 Operation 13 4.1 Measurement Principle, Measuring Behavior 13 5 Maintenance 15 5.1 Adjusting the Gauge 15 5.2 Cleaning the Gauge / Replacing Parts 16 5.2.1 Disassembling the Gauge 17 5.2.2 Cleaning the Gauge 18 5.2.3 Reassembling the Gauge 19 5.3 What to Do in Case of Problems 20 6 Removing the Gauge From the Vacuum System 21 7 Returning the Product 22 8 Accessories 22 9 Spare Parts 23 10 Disposal 24 Appendix 25 A: Measuring Signal vs. Pressure 25 B: Gas Type Dependence 27 Declaration of Contamination 29 For cross references within this document, the symbol (→ XY) is used, for references to other documents, the symbol (→ [Z]). 2 BG 805 155 BE / C (2008-04) PKR 251 Product Identification In all communications with Pfeiffer Vacuum, please specify the information given on the product nameplate. Pfeiffer Vacuum, D - 35614 Asslar Typ: No: F-No: V ; W TM VACUUM FullRange Compact Gauge Validity This document applies to products with part number PT R26 000 (DN 25 ISO-KF flange) PT R26 001 (DN 40 ISO-KF flange) PT R26 002 (DN 40 CF-F flange) The part number can be taken from the product nameplate.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,686,783 B2 Pan Et Al
    USOO8686783B2 (12) United States Patent (10) Patent No.: US 8,686,783 B2 Pan et al. (45) Date of Patent: Apr. 1, 2014 (54) LEVEL SHIFTER AND BOOST DRIVING (56) References Cited CIRCUIT U.S. PATENT DOCUMENTS (75) Inventors: Hsuan-I Pan, Taipei (TW); Guo-Kiang Hung, New Taipei (TW) 7.961,028 B2 * 6/2011 An et al. ....................... 327/333 7,973,561 B2 * 7/2011 vanRuymbeke et al. ....... 326,82 8, 102,124 B2 * 1/2012 Hung et al. ............ 315/127 (73) Assignee: MStar Semiconductor, Inc., Hsinchu 8,134.385 B2 * 3/2012 Gwinn ............................ 326/30 Hsien (TW) 8,264.272 B2 * 9/2012 Zhang et al. ... ... 327,433 2006/0192605 A1 8/2006 Suzuki et al. ................. 327/333 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 * cited by examiner U.S.C. 154(b) by 219 days. Primary Examiner — Lincoln Donovan (21) Appl. No.: 13/231,195 Assistant Examiner — Khareem EAlmo (74) Attorney, Agent, or Firm — Edell, Shapiro & Finnan, (22) Filed: Sep. 13, 2011 LLC (65) Prior Publication Data (57) ABSTRACT US 2012/0313669 A1 Dec. 13, 2012 A level shifter and an associated booster driving circuit are (30) Foreign Application Priority Data provided. The level shifter includes an input stage and an output stage. The input stage includes an input Switch, which Jun. 9, 2011 (TW) ............................. 1OO12O262 A receives an input signal and is selectively turned on according to the input signal. The output stage outputs a gate driving (51) Int. Cl. signal. The gate driving signal is at a low logic level when the HO3L 5/00 (2006.01) input Switch is turned on, and is at a high logic level when the (52) U.S.
    [Show full text]
  • Metal Halide Lamps
    ABOUT LITETRONICS 2-6 LED 7-16 DECORATIVE A-LINE PARFECTION BR FLUORESCENT 17-40 ENERGY-LITE PFT NEOLITE SPIRAL-LITE SPIRAL-PAR TABLE OF CONTENTS MICRO-BRITE HID 41-48 SUPER ARC METAL HALIDE SUPER ARC PULSE-START METAL HALIDE SUPER ARC HIGH PRESSURE SODIUM HALOGEN 49-58 LITEPAR XTRA-LIFE FROST PAR SUPER SAFE-T COOL RAY SURE BEAM MIRRO ECONO OMNI-LITE INCANDESCENT 59-69 800.860.3392 | litetronics.com BONUS-LIFE ROUGH SERVICE MINI-BRITE DURO-LITE GLOSSARY 70-75 COVER ART Image Credit: NASA "Visible Earth" is an actual photograph taken from space, and is the most detailed, true-color photo of the entire Earth to date. LAMP SHAPE MEASUREMENT 77 © 2012 LITETRONICS International, Inc. 1 COMPANY HISTORY Litetronics was founded in 1970. For over forty years, it has successfully led the industry in the development, marketing, and servicing of green lighting solutions. The rapid growth of Litetronics, from a localized direct sales organization into an international company, refl ects its business strategy of capitalizing on emerging lighting technologies to create unique, market-driven products. Growth has come primarily by concentrating on the worldwide multi-billion dollar commercial lighting market. This market has responded favorably to Litetronics’ energy effi cient, long-lasting, green lighting solutions. Litetronics created a tradition of innovation with its 20,000-hour Super Service incandescent light bulbs. In 1986, Litetronics introduced the Litepar halogen lamp family to its product mix. Three years later, Litetronics engineered the Xtra-Life halogen lamp with an average life of 5,000 hours, which is still the longest life halogen lamp available on the market.
    [Show full text]
  • Bicmos Cold Cathode Fluorescent Lamp Driver Controller Datasheet
    UCC1972/3 UCC2972/3 UCC3972/3 BiCMOS Cold Cathode Fluorescent Lamp Driver Controller FEATURES DESCRIPTION • 1mA Typical Supply Current Design goals for a Cold Cathode Fluorescent Lamp (CCFL) converter used in a notebook computer or portable application include small size, high effi- • Accurate Lamp Current Control ciency, and low cost. The UCC3972/3 CCFL controllers provide the neces- • Analog or Low Frequency Dimming sary circuit blocks to implement a highly efficient CCFL backlight power Capability supply in a small footprint 8 pin TSSOP package. The BiCMOS controllers typically consume less than 1mA of operating current, improving overall • Open Lamp Protection system efficiency when compared to bipolar controllers requiring 5mA to • Programmable Startup Delay 10mA of operating current. • 4.5V to 25V Operation External parts count is minimized and system cost is reduced by integrating such features as a feedback controlled PWM driver stage, open lamp pro- • PWM Frequency Synchronized to tection, startup delay and synchronization circuitry between the buck and External Resonant Tank push-pull stages. The UCC3972/3 include an internal shunt regulator, al- • 8 Pin TSSOP and SOIC Packages lowing the part to operate with input voltages from 4.5V up to 25V. The part Available supports both analog and externally generated low frequency dimming modes of operation. • Internal Voltage Clamp Protects Transformer from Over-voltage The UCC3973 adds a programmable voltage clamp at the BUCK pin. This (UCC3973) feature can be used to protect the transformer from overvoltage during startup or when an open lamp occurs. Transformer voltage is controlled by reducing duty cycle when an over-voltage is detected.
    [Show full text]