The Rho Meson Spectrum and Kaon-Pion Scattering with Partial

Total Page:16

File Type:pdf, Size:1020Kb

The Rho Meson Spectrum and Kaon-Pion Scattering with Partial THE ρ MESON SPECTRUM AND Kπ SCATTERING WITH PARTIAL WAVE MIXING IN LATTICE QCD by Andrew D. Hanlon B.Sc. in Physics and Computer Science, Michigan State University, 2013 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Andrew D. Hanlon It was defended on September 28, 2017 and approved by Adam Leibovich, Department of Physics and Astronomy, University of Pittsburgh Colin Morningstar, Department of Physics, Carnegie Mellon University Eric Swanson, Department of Physics and Astronomy, University of Pittsburgh Daniel Boyanovsky, Department of Physics and Astronomy, University of Pittsburgh Vladimir Savinov, Department of Physics and Astronomy, University of Pittsburgh Dissertation Advisors: Adam Leibovich, Department of Physics and Astronomy, University of Pittsburgh, Colin Morningstar, Department of Physics, Carnegie Mellon University ii Copyright c by Andrew D. Hanlon 2017 iii THE ρ MESON SPECTRUM AND Kπ SCATTERING WITH PARTIAL WAVE MIXING IN LATTICE QCD Andrew D. Hanlon, PhD University of Pittsburgh, 2017 The finite-volume QCD spectrum in the I = 1, S = 0, parity-odd, G-parity-even channels for zero total momentum is studied using lattice QCD, and the K-matrix for Kπ scattering is investigated to determine the mass and decay width of the K∗(892) from first principles. The recently developed stochastic LapH method has proven to be a valuable tool in lattice QCD calculations when all-to-all quark propagators are needed, as is the case for isoscalar mesons and two-hadron operators. This method is especially important for large volumes where other methods do not scale well. These calculations were done with 412 gauge configurations using clover-improved Wilson fermions on a large anisotropic 323 × 256 lattice with a pion mass near 240 MeV. The stationary states determined to be single-particle dominated are compared with the experimental resonances and are found to be in reasonable agreement. Additionally, the initial development of tetraquark operators is described. iv TABLE OF CONTENTS PREFACE ......................................... xiv 1.0 INTRODUCTION .................................1 2.0 LATTICE QCD ...................................6 2.1 Continuum QCD................................6 2.1.1 Euclidean Spacetime...........................9 2.2 Discretization of the QCD Action....................... 11 2.2.1 Fermionic action............................. 12 2.2.2 The Fermion Doubling Problem..................... 15 2.2.3 The Wilson Gauge Action........................ 16 2.2.4 Improved Actions............................ 18 2.2.5 Tuning the Lattice and Setting the Scale................ 20 2.3 Monte Carlo Integration............................ 22 2.3.1 The Hybrid Monte Carlo Algorithm.................. 24 2.3.2 The Rational Hybrid Monte Carlo Algorithm............. 26 2.4 Energies from Temporal Correlation Matrices................ 26 2.4.1 Hermiticity................................ 28 3.0 CONSTRUCTION OF HADRONIC OPERATORS ............ 31 3.1 Symmetry Channel Transformations..................... 32 3.2 The Basic Building Blocks........................... 35 3.2.1 Gauge-Link Smearing.......................... 36 3.2.2 LapH Smearing of the Quark Fields.................. 37 3.2.3 Gauge-Covariant Displacements..................... 42 v 3.2.4 Charge Conjugation and G-Parity................... 43 3.3 Elemental Operators.............................. 44 3.3.1 Flavor Structure............................. 44 3.3.2 Baryons.................................. 47 3.3.3 Mesons.................................. 49 3.4 The Lattice Symmetry Group......................... 52 3.4.1 The Octahedral Group O ........................ 56 3.4.2 The Point Group Oh ........................... 62 3.4.3 The Little Groups............................ 64 3.4.3.1 The Subductions onto the Little Group Irreps........ 64 3.4.4 Transformation of the Building Blocks................. 66 3.5 Group-Theoretical Projections onto Symmetry Channels.......... 67 3.6 Two-Hadron Operators............................. 70 3.6.1 Comparison with Local Two-Hadron Operators............ 71 4.0 THE ESTIMATION OF TEMPORAL CORRELATORS USING STOCHAS- TIC LAPH ...................................... 74 4.1 Distillation and The LapH Subspace..................... 78 4.2 Stochastic Estimate of Matrix Inverses.................... 79 4.2.1 Variance Reduction through Noise Dilution.............. 81 4.3 Stochastic Estimate of Quark Lines in the LapH Subspace......... 83 4.4 Temporal Correlators.............................. 86 4.4.1 Meson Temporal Correlators...................... 87 4.4.2 Multi-Hadron Correlators........................ 89 4.5 Dilution Schemes................................ 90 5.0 TETRAQUARK OPERATORS ........................ 91 5.1 Color Structure................................. 91 5.1.1 More Complicated Color Structure................... 93 5.1.2 Elemental Operators........................... 100 5.2 Computational Details............................. 101 6.0 ENERGIES FROM TEMPORAL CORRELATORS ............ 103 vi 6.1 Euclidean Space and Thermal Effects..................... 103 6.2 Temporal Correlator Matrix.......................... 105 6.2.1 The Generalized Eigenvalue Problem.................. 106 6.2.2 The Correlator Matrix Pivot...................... 108 6.2.2.1 Alternative Pivot Methods................... 110 6.3 Fitting to Temporal Correlators........................ 111 7.0 THE LUSCHER¨ QUANTIZATION CONDITION ............. 113 7.1 The Quantization Condition.......................... 115 7.1.1 Deriving The Quantization Condition................. 117 7.2 The K-matrix.................................. 121 7.2.1 The S-matrix............................... 122 7.2.2 Parameterizing the K-matrix...................... 125 7.3 The Box Matrix................................. 126 7.4 Block Diagonalization............................. 127 7.5 Fitting Strategies................................ 128 7.5.1 The Spectrum Method.......................... 128 7.5.2 The Determinant Residual Method................... 129 8.0 RESULTS ...................................... 131 8.1 Computational Details............................. 131 8.2 Operator Selection............................... 132 8.3 The I = 1;S = 0;P = −1;G = +1 Bosonic Spectra............. 133 + 8.3.1 A1u .................................... 135 + 8.3.2 A2u .................................... 142 8.3.2.1 Single Hadron Operators.................... 142 8.3.2.2 All operators, Single Hadron Improved Operators...... 142 + 8.3.3 Eu .................................... 150 + 8.3.4 T1u .................................... 156 8.3.4.1 Single Hadron Operators.................... 156 8.3.4.2 All operators, Single Hadron Improved Operators...... 158 + 8.3.5 T2u .................................... 169 vii 8.3.5.1 Single Hadron Operators.................... 169 8.3.5.2 All operators, Single Hadron Improved Operators...... 169 8.3.6 Finite-volume Spectrum Conclusions.................. 180 8.4 The K∗(892) Resonance............................ 181 9.0 CONCLUSIONS AND OUTLOOKS ..................... 187 APPENDIX A. RESAMPLING ........................... 189 A.1 Jackknife.................................... 190 A.2 Bootstrap.................................... 191 APPENDIX B. FITTING ............................... 193 APPENDIX C. OPERATOR CHOICES ...................... 196 + C.1 A1u ........................................ 197 + C.2 A2u ........................................ 201 + C.3 Eu ........................................ 204 + C.4 T1u ........................................ 208 + C.5 T2u ........................................ 213 BIBLIOGRAPHY .................................... 218 viii LIST OF TABLES 3.1 Elemental baryon operators............................ 48 3.2 Elemental meson operators............................ 51 3.3 Reference momentum and rotation choices................... 57 3.4 The conjugacy classes for the octahedral group O ............... 58 3.5 The choice of matrices used for the representation of O ............ 59 3.6 The occurrence of the octahedral irreps in the subduced representations of SO(3)....................................... 61 3.7 The conjugacy classes for the double octahedral group OD .......... 61 3.8 The choice of matrices used for the double-valued representations of O .... 62 3.9 The occurrence of the double octahedral irreps in the subduced representations of SU(3)...................................... 63 3.10 The subduced representations of the octahedral group onto the little groups. 65 5.1 The SU(3) Clebsch-Gordan coefficients used for constructing different color structures for tetraquarks............................. 95 7.1 The B-matrix irrep relationship to the lattice symmetry irrep......... 128 + 8.1 The lowest 33 fitted energies in the A1u channel................ 136 + 8.2 The A2u fitted energies using only single-hadron operators........... 142 + 8.3 The lowest 18 fitted energies in the A2u channel................ 143 + 8.4 The lowest 36 fitted energies in the Eu channel................. 150 + 8.5 The T1u fitted energies using only single-hadron operators........... 156 + 8.6 The lowest 64 fitted energies in the T1u channel................. 159 + 8.7 The T2u fitted energies using only single-hadron operators........... 169 ix + 8.8 The lowest 47 fitted energies
Recommended publications
  • The Charmed Double Bottom Baryon
    The charmed double bottom baryon Author: Marcel Roman´ı Rod´es. Facultat de F´ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Dr. Joan Soto i Riera (Dated: January 15, 2018) Abstract: The aim of this project is to calculate the wavefunction and energy of the ground 0 state of the Ωcbb baryon, which is made up of 2 bottom and 1 charm quarks. Such a particle has ++ not been found yet, but recent observation of the doubly charmed baryon Ξcc (ucc) indicates that a baryon with three heavy quarks may be found in the near future. In this work, we will use the fundamental representation of the SU(3) group to compute the interaction between the quarks, then we will follow the Born-Oppenheimer approximation to find the effective potential generated by the motion of the c quark, which will allow us to solve the Schr¨odinger equation for the bb system. The total spatial wavefunction we are looking for results from the product of the wavefunctions of the two components (c and bb). Finally, we will discuss the possible states taking into account the spin and color wavefunctions. I. INTRODUCTION II. THE STRONG INTERACTION The interaction between quarks is explained by Quan- In July 2017, the LHCb experiment at CERN reported tum Chromodynamics (QCD), which is a gauge theory the observation of the Ξ++ baryon [1], indicating that, cc based on the SU(3) symmetry group. At short distances, sooner rather than later, baryons made up of three heavy where the confinement term is negligible, the interaction quarks will be found.
    [Show full text]
  • Pion and Kaon Structure at 12 Gev Jlab and EIC
    Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real.
    [Show full text]
  • Selfconsistent Description of Vector-Mesons in Matter 1
    Selfconsistent description of vector-mesons in matter 1 Felix Riek 2 and J¨orn Knoll 3 Gesellschaft f¨ur Schwerionenforschung Planckstr. 1 64291 Darmstadt Abstract We study the influence of the virtual pion cloud in nuclear matter at finite den- sities and temperatures on the structure of the ρ- and ω-mesons. The in-matter spectral function of the pion is obtained within a selfconsistent scheme of coupled Dyson equations where the coupling to the nucleon and the ∆(1232)-isobar reso- nance is taken into account. The selfenergies are determined using a two-particle irreducible (2PI) truncation scheme (Φ-derivable approximation) supplemented by Migdal’s short range correlations for the particle-hole excitations. The so obtained spectral function of the pion is then used to calculate the in-medium changes of the vector-meson spectral functions. With increasing density and temperature a strong interplay of both vector-meson modes is observed. The four-transversality of the polarisation tensors of the vector-mesons is achieved by a projector technique. The resulting spectral functions of both vector-mesons and, through vector domi- nance, the implications of our results on the dilepton spectra are studied in their dependence on density and temperature. Key words: rho–meson, omega–meson, medium modifications, dilepton production, self-consistent approximation schemes. PACS: 14.40.-n 1 Supported in part by the Helmholz Association under Grant No. VH-VI-041 2 e-mail:[email protected] 3 e-mail:[email protected] Preprint submitted to Elsevier Preprint Feb. 2004 1 Introduction It is an interesting question how the behaviour of hadrons changes in a dense hadronic medium.
    [Show full text]
  • Charmed Baryons at the Physical Point in 2+ 1 Flavor Lattice
    UTHEP-655 UTCCS-P-69 Charmed baryons at the physical point in 2+1 flavor lattice QCD Y. Namekawa1, S. Aoki1,2, K. -I. Ishikawa3, N. Ishizuka1,2, K. Kanaya2, Y. Kuramashi1,2,4, M. Okawa3, Y. Taniguchi1,2, A. Ukawa1,2, N. Ukita1 and T. Yoshi´e1,2 (PACS-CS Collaboration) 1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan 2 Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan 3 Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 4 RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan (Dated: August 16, 2018) Abstract We investigate the charmed baryon mass spectrum using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 323 64 lattice. The dynamical up- × down and strange quark masses are tuned to their physical values, reweighted from those employed in the configuration generation. At the physical point, the inverse lattice spacing determined from the Ω baryon mass gives a−1 = 2.194(10) GeV, and thus the spatial extent becomes L = 32a = 2.88(1) fm. Our results for the charmed baryon masses are consistent with experimental values, except for the mass of Ξcc, which has been measured by only one experimental group so far and has not been confirmed yet by others. In addition, we report values of other doubly and triply charmed baryon masses, which have never been measured experimentally. arXiv:1301.4743v2 [hep-lat] 24 Jan 2013 1 I. INTRODUCTION Recently, a lot of new experimental results are reported on charmed baryons [1].
    [Show full text]
  • X. Charge Conjugation and Parity in Weak Interactions →
    Charge conjugation and parity in weak interactions Particle Physics X. Charge conjugation and parity in weak interactions REMINDER: Parity The parity transformation is the transformation by reflection: → xi x'i = –xi A parity operator Pˆ is defined as Pˆ ψ()()xt, = pψ()–x, t where p = +1 Charge conjugation The charge conjugation replaces particles by their antiparticles, reversing charges and magnetic moments ˆ Ψ Ψ C a = c a where c = +1 meaning that from the particle in the initial state we go to the antiparticle in the final state. Oxana Smirnova & Vincent Hedberg Lund University 248 Charge conjugation and parity in weak interactions Particle Physics Reminder Symmetries Continuous Lorentz transformation Space-time Translation in space Symmetries Translation in time Rotation around an axis Continuous transformations that can Space-time be regarded as a series of infinitely small steps. symmetries Discrete Parity Transformations that affects the Space-time Charge conjugation space-- and time coordinates i.e. transformation of the 4-vector Symmetries Time reversal Minkowski space. Discrete transformations have only two elements i.e. two transformations. Baryon number Global Lepton number symmetries Strangeness number Isospin SU(2)flavour Internal The transformation does not depend on Isospin+Hypercharge SU(3)flavour symmetries r i.e. it is the same everywhere in space. Transformations that do not affect the space- and time- Local gauge Electric charge U(1) coordinates. symmetries Weak charge+weak isospin U(1)xSU(2) Colour SU(3) The
    [Show full text]
  • Arxiv:2011.12166V3 [Hep-Lat] 15 Apr 2021
    LLNL-JRNL-816949, RIKEN-iTHEMS-Report-20, JLAB-THY-20-3290 Scale setting the M¨obiusdomain wall fermion on gradient-flowed HISQ action using the omega baryon mass and the gradient-flow scales t0 and w0 Nolan Miller,1 Logan Carpenter,2 Evan Berkowitz,3, 4 Chia Cheng Chang (5¶丞),5, 6, 7 Ben H¨orz,6 Dean Howarth,8, 6 Henry Monge-Camacho,9, 1 Enrico Rinaldi,10, 5 David A. Brantley,8 Christopher K¨orber,7, 6 Chris Bouchard,11 M.A. Clark,12 Arjun Singh Gambhir,13, 6 Christopher J. Monahan,14, 15 Amy Nicholson,1, 6 Pavlos Vranas,8, 6 and Andr´eWalker-Loud6, 8, 7 1Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, USA 2Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 3Department of Physics, University of Maryland, College Park, MD 20742, USA 4Institut f¨urKernphysik and Institute for Advanced Simulation, Forschungszentrum J¨ulich,54245 J¨ulichGermany 5Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 6Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 7Department of Physics, University of California, Berkeley, CA 94720, USA 8Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 9Escuela de F´ısca, Universidad de Costa Rica, 11501 San Jos´e,Costa Rica 10Arithmer Inc., R&D Headquarters, Minato, Tokyo 106-6040, Japan 11School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 12NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA 13Design Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 14Department of Physics, The College of William & Mary, Williamsburg, VA 23187, USA 15Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA (Dated: April 16, 2021 - 1:31) We report on a subpercent scale determination using the omega baryon mass and gradient-flow methods.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at NN
    Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at sNN = 62.4 GeV Ming Shao1,2 for the STAR Collaboration 1University of Science & Technology of China, Anhui 230027, China 2Brookhaven National Laboratory, Upton, New York 11973, USA PACS: 25.75.Dw, 12.38.Mh Abstract. We report on preliminary results of pion, kaon, and (anti-) proton trans- verse momentum spectra (−0.5 < y < 0) in Au+Au collisions at sNN = 62.4 GeV us- ing the STAR detector at RHIC. The particle identification (PID) is achieved by a combination of the STAR TPC and the new TOF detectors, which allow a PID cover- age in transverse momentum (pT) up to 7 GeV/c for pions, 3 GeV/c for kaons, and 5 GeV/c for (anti-) protons. 1. Introduction In 2004, a short run of Au+Au collisions at sNN = 62.4 GeV was accomplished, allowing to further study the many interesting topics in the field of relativistic heavy- ion physics. The measurements of the nuclear modification factors RAA and RCP [1][2] at 130 and 200 GeV Au+Au collisions at RHIC have shown strong hadron suppression at high pT for central collisions, suggesting strong final state interactions (in-medium) [3][4][5]. At 62.4 GeV, the initial system parameters, such as energy and parton den- sity, are quite different. The measurements of RAA and RCP up to intermediate pT and the azimuthal anisotropy dependence of identified particles at intermediate and high pT for different system sizes (or densities) may provide further understanding of the in-medium effects and further insight to the strongly interacting dense matter formed in such collisions [6][7][8][9].
    [Show full text]
  • Phenomenology Lecture 6: Higgs
    Phenomenology Lecture 6: Higgs Daniel Maître IPPP, Durham Phenomenology - Daniel Maître The Higgs Mechanism ● Very schematic, you have seen/will see it in SM lectures ● The SM contains spin-1 gauge bosons and spin- 1/2 fermions. ● Massless fields ensure: – gauge invariance under SU(2)L × U(1)Y – renormalisability ● We could introduce mass terms “by hand” but this violates gauge invariance ● We add a complex doublet under SU(2) L Phenomenology - Daniel Maître Higgs Mechanism ● Couple it to the SM ● Add terms allowed by symmetry → potential ● We get a potential with infinitely many minima. ● If we expend around one of them we get – Vev which will give the mass to the fermions and massive gauge bosons – One radial and 3 circular modes – Circular modes become the longitudinal modes of the gauge bosons Phenomenology - Daniel Maître Higgs Mechanism ● From the new terms in the Lagrangian we get ● There are fixed relations between the mass and couplings to the Higgs scalar (the one component of it surviving) Phenomenology - Daniel Maître What if there is no Higgs boson? ● Consider W+W− → W+W− scattering. ● In the high energy limit ● So that we have Phenomenology - Daniel Maître Higgs mechanism ● This violate unitarity, so we need to do something ● If we add a scalar particle with coupling λ to the W ● We get a contribution ● Cancels the bad high energy behaviour if , i.e. the Higgs coupling. ● Repeat the argument for the Z boson and the fermions. Phenomenology - Daniel Maître Higgs mechanism ● Even if there was no Higgs boson we are forced to introduce a scalar interaction that couples to all particles proportional to their mass.
    [Show full text]
  • Pion-Proton Correlation in Neutrino Interactions on Nuclei
    PHYSICAL REVIEW D 100, 073010 (2019) Pion-proton correlation in neutrino interactions on nuclei Tejin Cai,1 Xianguo Lu ,2,* and Daniel Ruterbories1 1University of Rochester, Rochester, New York 14627, USA 2Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom (Received 25 July 2019; published 22 October 2019) In neutrino-nucleus interactions, a proton produced with a correlated pion might exhibit a left-right asymmetry relative to the lepton scattering plane even when the pion is absorbed. Absent in other proton production mechanisms, such an asymmetry measured in charged-current pionless production could reveal the details of the absorbed-pion events that are otherwise inaccessible. In this study, we demonstrate the idea of using final-state proton left-right asymmetries to quantify the absorbed-pion event fraction and underlying kinematics. This technique might provide critical information that helps constrain all underlying channels in neutrino-nucleus interactions in the GeV regime. DOI: 10.1103/PhysRevD.100.073010 I. INTRODUCTION Had there been no 2p2h contributions, details of absorbed- pion events could have been better determined. The lack In the GeV regime, neutrinos interact with nuclei via of experimental signature to identify either process [14,15] is neutrino-nucleon quasielastic scattering (QE), resonant one of the biggest challenges in the study of neutrino production (RES), and deeply inelastic scattering (DIS). interactions in the GeV regime. In this paper, we examine These primary interactions are embedded in the nucleus, the phenomenon of pion-proton correlation and discuss where nuclear effects can modify the event topology. the method of using final-state (i.e., post-FSI) protons to For example, in interactions where no pion is produced study absorbed-pion events.
    [Show full text]
  • Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
    Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2
    [Show full text]
  • Pion Decay – Solution Note Background Particle Physics Research Institutes Are Trying to Simulate and Research the Behavior of Sub-Atomic Particles
    Simulate, Stimulate, Test… Pion Decay – Solution Note Background Particle physics research institutes are trying to simulate and research the behavior of sub-atomic particles. 0 A Pion is any of three sub-atomic particles : 휋 , 휋−, 푎푛푑 휋+. Each Pion consists of a Quark and an Anti- quark and is therefore a Meson. Pions are the lightest Mesons, because they are composed of the lightest Quarks. Because Pions consists of a particle and an antiparticle, they are very unstable, with the Pions − + −8 휋 , 푎푛푑 휋 decaying with a mean lifetime of 26 nanoseconds (2.6×10 seconds), and the neutral 0 Pion 휋 decaying with a much shorter lifetime of 8.4×10−17 seconds. Figure 1: Nuclear force interaction Requirement The primary decay mode of a Pion, with probability 0.999877, is a purely Leptonic decay into an anti- Muon and a Muon Neutrino. + + 휋 → 휇 + 푣휇 − − 휋 → 휇 + 푣휇̅ The second most common decay mode of a Pion, with probability 0.000123, is also a Leptonic decay into an Electron and the corresponding Electron anti-Neutrino. This "electronic mode" was discovered at CERN in 1958. + + 휋 → 푒 + 푣푒 − − 휋 → 푒 + 푣푒̅ Also observed, for charged Pions only, is the very rare "Pion beta decay" (with probability of about 10−8) into a neutral Pion plus an Electron and Electron anti-Neutrino. 0 The 휋 Pion decays in an electromagnetic force process. The main decay mode, with a branching ratio BR=0.98823, is into two photons: Pion Decay - Solution Note No. 1 Simulate, Stimulate, Test… 휋0 → 2훾 The second most common decay mode is the “Dalitz decay” (BR=0.01174), which is a two-photon decay with an internal photon conversion resulting a photon and an electron-positron pair in the final state: 휋0 → 훾+푒− + 푒+ Also observed for neutral Pions only, are the very rare “double Dalitz decay” and the “loop-induced decay”.
    [Show full text]