A New Pod-Inhabiting Species of Xylaria (Xylariaceae) from Ethiopia

Total Page:16

File Type:pdf, Size:1020Kb

A New Pod-Inhabiting Species of Xylaria (Xylariaceae) from Ethiopia Xylaria aethiopica sp. nov. – a new pod-inhabiting species of Xylaria (Xylariaceae) from Ethiopia Jacques FOURNIER Abstract: A filiform and nodulose Xylaria repeatedly collected on woody pods of the endemic tree Milletia Yu-Ming JU ferruginea in Ethiopia is documented with macromorphological, micromorphological, culture, and DNA se- Huei-Mei HSIEH quence data. A comparison with known related species sharing a similar ecology and Xylaria taxa previously Uwe LINDEMANN reported from this region show its distinctiveness. the new species X. aethiopica is therefore proposed to accommodate it. Keywords: Ascomycota, Milletia ferruginea, taxonomy, Xylariales. Ascomycete.org, 10 (5) : 209–215 Mise en ligne le 04/11/2018 Résumé : une Xylaire à stromas filiformes et noduleux a été récoltée à plusieurs reprises sur gousses li- 10.25664/ART-244 gneuses de Milletia ferruginea, un arbre endémique d’Éthiopie. Des données concernant sa macromorpho- logie, sa micromorphologie, ses caractéristiques en culture et ses séquences ADN sont apportées. la comparaison avec les espèces connues ayant la même écologie et les taxons de Xylaria préalablement si- gnalés de cette région établissent sa singularité. Par conséquent la nouvelle espèce X. aethiopica est propo- sée. Mots-clés : Ascomycota, Milletia ferruginea, taxinomie, Xylariales. Introduction Material and methods Ethiopia is characterized by highly diverse ecosystems ranging morphological characterization follows fouRNiER et al. (2018a; from the deserts of the Afar Depression with the hottest places on 2018b). fungal collections were deposited in mStR, museum für Naturkunde (münster, Germany) and in HASt, Academia Sinica earth (year-round average temperatures) and the lowest point in (taipei, taiwan). Africa (at 155 meters below sea level) on the one hand to the moun- Cultures were obtained by scooping out perithecial contents and tains of Northern Ethiopia (Simen) and East Ethiopia (Bale) with el- placing them on SmE medium (KENERlEy & RoGERS, 1976). Resulting evations over 3000 meters and several peaks over 4000 meters on colonies were transferred to 9-cm plastic Petri dishes containing 2% the other hand. Active and extinct volcanoes characterize the zone Difco oatmeal agar (oA), from which the culture descriptions were along the Great Rift Valley, which separates Ethiopia from north to made, and incubated at 20° C under 12 h fluorescent light. the cul- south more than 600 kilometers. ture was deposited at BCRC (Bio-resource Collection and Research Center, Hsin-chu, taiwan). Due to the diverse ecological conditions, Ethiopia has a unique PCR amplifications of β-tub and α-act were described in HSiEH et flora and fauna with many endemic species, and one can assume al. (2005), whereas those of rpb2 and itS were in HSiEH et al. (2010) that this is no less true for fungi. While the flora and fauna of Ethiopia and HSiEH et al. (2009), respectively. these four sequences were sub- are well known (HEDBERG & EDWARDS, 1989; Puff & NEmomiSSA, 2005; jected to NCBi mEGABlASt queries. EtHioPiAN BioDiVERSity iNStitutE, 2014), the diversity of the Ethiopian Phylogenetic analyses were performed with mrBayes 3.0b4 fungi is barely explored, though fungi were included in a recent re- (HuElSENBECK & RoNquiSt, 2003) for Bayesian (BA) analyses and PAuP* search project of investigation of the biodiversity in the Kafa Bio- 4.0b10 (SWoffoRD, 2003) for maximum parsimony (mP) analyses based on combined sequences of rpb2, β-tub and α-act. Parameter sphere Reserve in southwestern Ethiopia (tHE NAtuRE AND BioDiVERSity settings for BA and mP followed HSiEH et al. (2010). Decision on com- CoNSERVAtioN uNioN (NABu), 2017). bining sequences of the three loci was based on statistical congru- the diversity of the Ascomycota in Ethiopia and especially of the ence suggested by a partition homogeneity test (fARRiS et al., 1994; Pyrenomycetes is nearly unknown. Apart from the few data in the HuElSENBECK et al., 1996). the combined sequences of rpb2, β-tub and two “checklists” of the fungal diversity of Ethiopia, Eritrea, Djibouti α-act of X. aethiopica were added to the RPB2-tuB-ACt dataset in and Somalia, the former “italian East Africa”, including 13 Xylaria taxa Ju et al. (2011), which consisted of those from HSiEH et al. (2010) and (CAStEllANi & CifERRi, 1938; 1950), there is no specific research which X. coprinicola. the resulting dataset contained 133 isolates of 116 taxa, where major genera of the subfamily Xylarioideae as well as deals with this large group of fungi. Recent contributions to the As- representatives of various groups and species aggregates of Xylaria comycota of Ethiopia are those by moRAVEC (1978; 1983; 1998), were included. three out-group taxa were Annulohypoxylon co- fouRNiER et al. (2010) and liNDEmANN (2009; 2012; 2013; 2017). this haerens (Pers.) y.-m. Ju et al., Biscogniauxia arima San martín et al., paper is a modest contribution to the knowledge of Pyrenomycetes and B. mediterranea (De Not.) Kuntze of the subfamily Hypoxy- in Ethiopia by describing a new species of Xylaria which grows on loideae. the pods of an endemic tree of Ethiopia, Millettia ferruginea (Hochst.) Baker, a very common tree of the North Ethiopian uplands. Taxonomy the new species X. aethiopica is described and illustrated, based on six collections on the same substrate in similar environments; we Xylaria aethiopica J. fourn., y.-m. Ju, H.-m. Hsieh & u. lindem., sp. document it with macromorphological, micromorphological, cul- nov. – mycoBank mB 828260 – Plates 1–3, fig. 1. ture, and DNA sequence data and we compare it with known related Diagnosis: Differs from other species of Xylaria occurring on species sharing a similar ecology. woody fruits by the combination of glabrous filiform stromata with the taxonomic and nomenclatural status of the thirteen Xylaria conspicuously exposed perithecial contours under a narrowly taxa previously reported from this region by CAStEllANi & CifERRi striped outer layer, appendaged ascospores 11–13 × 3.8–4.5 µm (1938; 1950) are discussed, showing by comparison that with a straight germ slit and strongly suspected host-specificity for X. aethiopica represents an undescribed species. Milletia ferruginea pods in Ethiopia. 209 Plate 1 – Xylaria aethiopica. Holotype (mStR P-20000). A: mature stromata on host surface; B: Close-up on stromatal surface showing free perithecia beneath the lacerated brown outer layer; C: immature stroma showing a hairy stipe and a grey stromatal surface; D: Stromatal surface in close-up showing absence of tomentum and slightly exposed perithecia piercing through a greyish brown outer layer, some showing a slightly papillate ostiole; E: fertile head of a mature stroma showing immersed perithecia, a spathulate sterile apex, remnants of brownish outer layer and ostioles with white discs; f: Apex of a filiform stroma showing free perithecia, remnants of a brownish outer layer and broken spathulate sterile apex; G: Stroma in longitudinal section showing immersed to slightly exposed perithecia beneath a thin black crust and a white solid interior; H: Close-up on two adjacent exposed perithecia showing their black roughened surface and a smooth, golden yellow os- tiolar area. Scale bars: A = 10 mm; B, D, f-H = 0.5 mm; C = 5 mm; E = 1 mm. 210 Ascomycete.org Typification: EtHioPiA: Addis Ababa, in the park of the Ghion Hotel, tary island Kibran Gabriel near Bahir Dar, approx. 11°39’ N, 37°21’ E, 9°01’ N, 38°76’ E, 2300 m asl, on fallen dead woody pods of Millettia circa 1800 m asl, same host, 30 Dec. 2009, leg. uwe lindemann ferruginea (Hochst.) Baker (Fabaceae), 15 Sept. 2009, leg. uwe lin- (mStR P-19997); lake tana, ura Kidane mihret monastery near Zege, demann (holotype mStR P-20000; isotype HASt 143676) (cultured); approx. 11°41’ N, 37°20’ E, circa 1800 m asl, 30 Dec. 2009, same host, ex type culture: fu31033; GenBank sequences: itS = mH790445; β- leg. uwe lindemann (mStR P-19996). tubulin = mH785221; RPB2 = mH785222; α-actin = mH785223. Comments: We studied six collections of X. aethiopica, all occur- Etymology: the epithet refers to Ethiopia, the country where the ring on the woody pods of Millettia ferruginea, an endemic faba- fungus was repeatedly collected on fruits of a tree endemic to this ceous tree of Ethiopian highlands, which suggests a strong region. host-preference, if not host-specificity. Xylaria aethiopica grows in dense groups on more or less rotten, blackened, often curled pods Stromata filiform, upright, simple to rarely furcate, arising sepa- of M. ferruginea, both on the inner and outer side of the pods. the rately or in small bundles, 15–30 mm total height, the fertile heads pods lie for more than one year, often for several years, on the 5–12 mm high × 0.8–1.2(–1.7) mm diam, straight to curved, flat- ground before X. aethiopica fruits on it. tened in places, with pointed to most often flattened to spathulate Milletia ferruginea belongs to the family Fabaceae and can reach sterile apices; the stipes well-defined, 10–22 mm high, sinuous to 20 meters tall. its natural habitat is restricted to the Ethiopian up- strongly contorted, black, puckered, finely downy, tomentose and land (1000–2500 m asl), but it has also been planted in many cities slightly swollen at base. Stromatal surface strongly nodulose with and villages of Northern Ethiopia. it provides shade in coffee plan- perithecia partly immersed to nearly superficial, glabrous; outer tations. it flowers in the wet season between may and october (HED- crust black, slightly roughened, leathery, 20–30 µm thick, with grey BERG & EDWARDS, 1989; Puff & NEmomiSSA, 2005). to pale brown superficial layer splitting into elongated strips and Based on its filiform glabrous stromata with a grey to yellow forming a network around the exposed perithecial contours, grad- brown narrowly striped outer layer over conspicuously exposed ually worn off until full maturity; interior white, solid, pithy. Perithe- perithecial contours and navicular appendaged ascospores with cia subglobose 0.3–0.35 mm diam.
Recommended publications
  • Biscogniauxia Granmoi (Xylariaceae) in Europe
    ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Osten. Z.Pilzk 8(1999) 139 Biscogniauxia granmoi (Xylariaceae) in Europe THOMAS L£SS0E CHRISTIAN SCHEUER Botanical Institute, Copenhagen University Institut fiir Botanik der Karl-Franzens-Universitat Oster Farimagsgade 2D Holteigasse 6 DK-1353 Copenhagen K, Denmark A-8010 Graz, Austria e-mail: [email protected] e-mail: [email protected] ALFRED GRANMO Trornso Museum, University of Tromse N-9037 Tromso, Norway e-mail: [email protected] Received 5. 7. 1999 Key words: Xylariaceae, Biscogniauxia. - Taxonomy, distribution. - Fungi of Europe, Asia. Abstract: Biscogniauxia granmoi, growing on Prunus padus (incl. var. pubescens = Padus asiatica) is reported from Europe and Asia, with material from Austria, Latvia, Norway, Poland, and Far Eastern Russia. It is compared with B. nummulana s. str., B. capnodes and B. simphcior. The taxon was included in the recent revision of Biscogniauxia by JU & al. {1998, Mycotaxon 66: 50) under the name "B. pruni GRANMO, L/ESS0E & SCHEUER" nom. prov. Zusammenfassung: Biscogniauxia granmoi, die bisher ausschließlich auf Prunus padus (inkl. var pubescens = Padus asiatica) gefunden wurde, wird aufgrund von Aufsammlungen aus Europa und Asien vorgestellt. Die bisherigen Belege stammen aus Österreich, Litauen, Norwegen, Polen und dem femöstlichen Teil Rußlands. Die Unterschiede zu B. nummulana s. Str., B. capnodes und H simphaor werden diskutiert. Dieses Taxon wurde unter dem Namen "B. pruni Granmo, l.aessoe & Scheuer" nom. prov. schon von JU & al. (1998, Mycotaxon 66: 50) in ihre Revision der Gattung Biscogniauxia aufge- nommen. The genus Biscogniauxia KUNTZE (Xylariaceae) was resurrected and amended by POUZAR (1979, 1986) for a group of Xylariaceae with applanate dark stromata that MILLER (1961) treated in Hypoxylon BULL., and for a group of species with thick, discoid stromata formerly placed in Nummularia TUL.
    [Show full text]
  • The Ascomycota
    Papers and Proceedings of the Royal Society of Tasmania, Volume 139, 2005 49 A PRELIMINARY CENSUS OF THE MACROFUNGI OF MT WELLINGTON, TASMANIA – THE ASCOMYCOTA by Genevieve M. Gates and David A. Ratkowsky (with one appendix) Gates, G. M. & Ratkowsky, D. A. 2005 (16:xii): A preliminary census of the macrofungi of Mt Wellington, Tasmania – the Ascomycota. Papers and Proceedings of the Royal Society of Tasmania 139: 49–52. ISSN 0080-4703. School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia (GMG*); School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia (DAR). *Author for correspondence. This work continues the process of documenting the macrofungi of Mt Wellington. Two earlier publications were concerned with the gilled and non-gilled Basidiomycota, respectively, excluding the sequestrate species. The present work deals with the non-sequestrate Ascomycota, of which 42 species were found on Mt Wellington. Key Words: Macrofungi, Mt Wellington (Tasmania), Ascomycota, cup fungi, disc fungi. INTRODUCTION For the purposes of this survey, all Ascomycota having a conspicuous fruiting body were considered, excluding Two earlier papers in the preliminary documentation of the endophytes. Material collected during forays was described macrofungi of Mt Wellington, Tasmania, were confined macroscopically shortly after collection, and examined to the ‘agarics’ (gilled fungi) and the non-gilled species, microscopically to obtain details such as the size of the
    [Show full text]
  • Ethnomacrofungal Study of Some Wild Macrofungi Used by Local Peoples of Gorakhpur District, Uttar Pradesh
    Indian Journal of Natural Products and Resources Vol. 10(1), March 2019, pp 81-89 Ethnomacrofungal study of some wild macrofungi used by local peoples of Gorakhpur district, Uttar Pradesh Pratima Vishwakarma* and N N Tripathi Bacteriology & Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, U.P, India Received 14 January; 2018 Revised 11 March 2019 Gorakhpur district having varied environmental condition is sanctioned with wealth of many important macrofungi but only few works has been done here to explore the diversity. The present investigation focus on the ethnomacrofungal study of Gorakhpur district. From information obtained it became clear that many macrofungi are widely consumed here by local and tribal peoples as food and medicines. Species of Daldinia, Macrolepiota, Pleurotus, Termitomyces, etc. are used to treat various ailments. Thus the present study clearly states that Gorakhpur district is reservoir of macrofungi having nutritional and medicinal benefits. Keywords: Bhar, Bhuj, Kewat, Local villagers, Macrofungi, Tharu. IPC code; Int. cl. (2015.01)- A61K 36/00 Traditional medicine or ethno medicine is a healthcare economical benefit. The wild mushrooms have been practice that has been transmitted orally from traditionally consumed by man with delicacy generation to generation through traditional healers probably, for their taste and pleasing flavour. They with an aim to cure different ailments and is strongly have rich nutritional value with high content of associated to religious beliefs and practices of the proteins, vitamins, minerals, fibres, trace elements indigenous people1,2. Since the beginning of human and low calories and cholesterol6. civilization man has been using many herbs and There are lots of works which had been done herbal extracts as medicine.
    [Show full text]
  • Early Illustrations of Xylaria Species
    North American Fungi Volume 3, Number 7, Pages 161-166 Published August 29, 2008 Formerly Pacific Northwest Fungi Early illustrations of Xylaria species Donald H. Pfister Farlow Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138 USA Pfister, D. H. 2008. Early illustrations of Xylaria species. North American Fungi 3(7): 161-166. doi: 10.2509/naf2008.003.0079 Corresponding author: [email protected]. Accepted for publication May 1, 2008. http://pnwfungi.org Copyright © 2008 Pacific Northwest Fungi Project. All rights reserved. Abstract: Four 17th and early 18th Century examples of illustrations of Xylaria species are presented. One of the earliest illustrations of a Xylaria species is that in Mentzel’s Pugillus rariorum plantarum published in 1682 and which Fries referred to Sphaeria polymorpha. An 1711 illustration by Marchant is noteworthy in the detail of the observations; perithecia and ascospores are noted and illustrated. Marchant considered this fungus to be related to marine corals. The plate was subsequently redone and incorporated by Micheli in his 1729 publication, Nova plantarum genera; this Micheli plate was listed by Fries under a different species, Sphaeria digitata. Although Fries mentions several illustrations of Sphaeria hypoxylon not all the sources he cited contain illustrations. The earliest illustration associated 162 Pfister. Early illustrations of Xylaria species. North American Fungi 3(7): 161-166 with this species that was located is Micheli’s in 1729. These illustrations are included along with discussion of the authors and books in which the illustrations appear. Key words: Fries, Marchant, Mentzel, Micheli, Xylaria, early illustrations The genus Xylaria Hill ex Schrank is one that literature related to the illustrations, and to many people recognize but only few understand.
    [Show full text]
  • 108 Acremonium-Подобные Грибы
    Acremonium-подобные грибы: разнообразие таксонов Е.Ю. Благовещенская, Н.И.Блум Московский Государственный университет имени М.В. Ломоносова [email protected] Acremonium Link — это анаморфный род порядка Hypocreales, широко представленный в природе и имеющий очень большое практическое значение, особенно для медицинской микологии. Бедность морфологии неоднократно приводила (и приводит) к существенным проблемам при идентификации изолятов и различным таксономическим конфузам. Наиболее знаменитым из них, конечно же, является само существование этого рода, так как многие виды акремониев и по сегодняшний день фигурируют в работах как виды другого рода — рода Cephalosporium Corda — который еще полвека назад был признан nomen confusum (Gams, 1968). Основная часть видов этого рода перешла в род Acremonium, а затем и в другие таксоны сумчатых грибов. Тем не менее, в настоящий момент времени в базах Index Fungorum и MycoBank около двадцати видов рода Cephalosporium снова имеют статус леги-тимных, причем некоторый абсурд ситуации добавляет то, что род Cephalosporium в базе Index Fungorum по-прежнему указан как синонимичный роду Acremonium. Таким образом, ситуация остается весьма запутанной. В русскоязычной литературе проблемное положение акремониеподобных грибов вообще практически не освещалось за небольшим исключением (Тарасов, 1976; Налепина и Тарасов, 1987). В нашей работе мы постараемся восполнить этот пробел и привести обзор современного положения Acremonium spp. и схожих видов. Для облегчения восприятия мы приводим в алфавитном порядке список наиболее важных терминов, используемых в ли-тературе при описании таксонов с пояснениями и схематическими иллюстрациями (рис. 1). Термины, используемые при описании таксонов Аделофиалида — редуцированная фиалида в виде слабо дифференцированного ответ-вления от основной клетки (рис. 1, d); септы, отделяющей аделофиалиду от подлежащей гифы, не формируется. Характерная особенность — хорошо выраженный воротничок.
    [Show full text]
  • Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
    microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS).
    [Show full text]
  • Aspergillus Subgenus Polypaecilum from the Built Environment
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 88: 237–267 (2017). Aspergillus subgenus Polypaecilum from the built environment J.B. Tanney1,2*,5, C.M. Visagie1,3,4*,5, N. Yilmaz1,3, and K.A. Seifert1,3 1Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada; 2Institut de Biologie Integrative et des Systemes (IBIS), Universite Laval, Quebec G1V 0A6, Canada; 3Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada; 4Biosystematics Division, ARC-Plant Health and Protection, P/BagX134, Queenswood, 0121 Pretoria, South Africa *Correspondence: J.B. Tanney, [email protected]; C.M. Visagie, [email protected] 5The first two authors contributed equally to this work and share the first authorship Abstract: Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454- pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A.
    [Show full text]
  • Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
    Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result.
    [Show full text]
  • Resurrection and Emendation of the Hypoxylaceae, Recognised from a Multigene Phylogeny of the Xylariales
    Mycol Progress DOI 10.1007/s11557-017-1311-3 ORIGINAL ARTICLE Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales Lucile Wendt1,2 & Esteban Benjamin Sir3 & Eric Kuhnert1,2 & Simone Heitkämper1,2 & Christopher Lambert1,2 & Adriana I. Hladki3 & Andrea I. Romero4,5 & J. Jennifer Luangsa-ard6 & Prasert Srikitikulchai6 & Derek Peršoh7 & Marc Stadler1,2 Received: 21 February 2017 /Revised: 12 April 2017 /Accepted: 19 April 2017 # The Author(s) 2017. This article is an open access publication Abstract A multigene phylogeny was constructed, including polymerase II (RPB2), and beta-tubulin (TUB2). Specimens a significant number of representative species of the main were selected based on more than a decade of intensive mor- lineages in the Xylariaceae and four DNA loci the internal phological and chemotaxonomic work, and cautious taxon transcribed spacer region (ITS), the large subunit (LSU) of sampling was performed to cover the major lineages of the the nuclear rDNA, the second largest subunit of the RNA Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut This article is part of the “Special Issue on ascomycete systematics in segregation of the Xylariaceae into several major clades, honor of Richard P. Korf who died in August 2016”. which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these The present paper is dedicated to Prof. Jack D. Rogers, on the occasion of his fortcoming 80th birthday. clades contained Annulohypoxylon, Hypoxylon, Daldinia,and other related genera that have stromatal pigments and a Section Editor: Teresa Iturriaga and Marc Stadler nodulisporium-like anamorph.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    Xylarias of Indiana 225 SOME XYLARIAS OF INDIANA. Stacy Hawkins, Indiana University. Xylarias have been collected for many years in various counties of the state, but we have studied them particularly from localities near Indiana University. The most striking thing about this interesting- genus is the small number of species found in proportion to the large number of individuals that occur throughout the world. However, the wide distribution and the frequent occurrence of our few species is equally striking. There is no intention in this brief paper to make a complete list of the species. World Distribution. Xylarias are almost world-wide in their dis- tribution. They are far more abundant in the tropics, but retain their peculiar characteristics in all regions. They are, for the most part, saprophytic but are capable of becoming parasitic and infecting living plants under certain conditions. Of the many reports of parasitism, mention may be made of the infection of coconut palms in East Africa and the infection of the rubber plant, Hevea, in Asiatic regions from Ceylon to the East Indies. For the most part, the growth of the fungus is limited to the roots or the bases of trees but in some regions (mainly tropical) they have been found frequently on fallen limbs, fallen herba- ceous material, and dead leaves. In Europe, considerable trouble is experienced by the hastening of decay of oak grape vine stakes by species of Xylaria. Behavior of Certain Species in United States. Xylarias are found growing on the roots of living beech, maple, oak, and other forest trees and are considered saprophytic as there seems to be no apparent injury to the host.
    [Show full text]
  • Rare Fungal Infection Linked to a Case of Juvenile Arthritis
    Open Access Case Report DOI: 10.7759/cureus.3229 Rare Fungal Infection Linked to a Case of Juvenile Arthritis Karin Ried 1 , Peter Fakler 1 1. NIIM Research, National Institute of Integrative Medicine, Melbourne, AUS Corresponding author: Karin Ried, [email protected] Abstract Juvenile arthritis with unknown disease etiology is also known as juvenile idiopathic arthritis. Symptoms include joint pain, swelling, and stiffness, and standard treatment involves immunosuppressant medication. Here we present a case of juvenile idiopathic arthritis with severe malnutrition and worsening of symptoms, which restrained a nine-year-old girl to a wheelchair with minimal movement capacity and low energy during standard immunosuppressant therapies over the course of three years. Our innovative Pathogen Blood Test combining cytology-based microscopy and genetic analysis using a pan-fungal primer assay and sequencing identified a systemic fungal infection with Sagenomella species, closely related to Aspergillus, and a soil-dwelling highly pathogenic fungus, which had previously been linked to a fatal veterinary case of arthritis and malnutrition. Our test results encouraged a radical change of the patient’s treatment plan, including cessation of the regular immunosuppressants, including steroids, over six months. The patient made a progressive recovery, including complete reversion of the previously swollen and painful joints, development of a good appetite, and return to liveliness. Within the year of change from immunosuppressants to immune-supportive integrative nutritional therapies, including regular intravenous vitamin C, and oral vitamin D, as well as gentle aqua- and physiotherapy, the patient started to gain weight including muscle mass and regained strength and movement in the hands, arms, and legs.
    [Show full text]
  • The Phylogenetic Position of Rhopalostroma As Inferred from a Polythetic Approach
    Persoonia 25, 2010: 11–21 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X524231 The phylogenetic position of Rhopalostroma as inferred from a polythetic approach M. Stadler1, J. Fournier2, S. Gardt3, D. Peršoh3 Key words Abstract The xylariaceous genus Rhopalostroma comprises a small conglomerate of stromatic, angiosperm- associated pyrenomycetes, which have so far exclusively been reported from the palaeotropics, above all from Ascomycota tropical Africa and South Asia. Morphological and chemotaxonomic studies had suggested their close relationship chemosystematics to the genera Daldinia and Hypoxylon. However, those results were mainly based on herbarium specimens, and extrolites no molecular phylogenetic data were available on Rhopalostroma. During a foray in Côte d’Ivoire, fresh material of fungi R. angolense was collected, cultured and studied by microscopic methods and by secondary metabolite profiling Rhopalostroma using high performance liquid chromatography coupled with diode array and mass spectrometric detection. In ad- Xylariales dition, ITS nrDNA sequences of the cultures were generated and compared to those of representative Xylariaceae taxa, to evaluate the phylogenetic affinities of this fungus. The results showed that R. angolense is closely related to the daldinoid Xylariaceae, and in particular to the predominantly neotropical genera Phylacia and Thamnomyces. Article info Received: 22 March 2010; Accepted: 29 June 2010; Published: 27 July 2010. INTRODUCTION molecular phylogenetic data (Bitzer et al. 2008, Stadler et al. 2010b). Ruwenzoria, a recently described tropical xylariaceous The genus Rhopalostroma was erected by Hawksworth (1977) genus (Stadler et al. 2010a), also features early deliquescent to accommodate a series of palaeotropical pyrenomycetes that asci that are devoid of an amyloid apical apparatus.
    [Show full text]