<<

Multi-storey sequestration systems in – safety and economy of the CCS

Grzegorz PIE ŃKOWSKI Adam Wójcicki Pa ństwowy Instytut Geologiczny – Pa ństwowy Instytut Badawczy CCS – Carbon Capture and Storage

Herein, we will present only the deep saline aquifers – most promising in terms of capacity and economy. However, geological characterization is still a seatback in case of such storage sites. We will show how to fill this gap - on the example of saline aquifers of the epicontinental Lower of Poland. Minimum CCS requirements (according to CO2STORE)

• Thickness of the seal - min. 50 m, however, integrity (continuity) of the seal is more important • Depth of the reservoir formation - 800 to 2000 m • Thickness of the reservoir formation: minimum 20-30 m • Porosity of the reservoir: minimum 10%, optimal 20% or more • Permeability of the reservoir: minimum 100 mD

Safety – depends on thickness, properties ind integrity (latetral continuity) of the seal formation Geological structure of the -Mesozoic basin of Poland (horizontal cut map at – 1 kilometre, the depth suitable for CO2 storage. Deep blue = Lower Jurassic

Horizontal cut map at -1 km (Kota ński i in.) Eight potential storage regions in Poland – I and III are most promising

MO ŻLIWO ŚCI GEOLOGICZNEJ SEKWESTRACJI CO2 W POLSCE POSSIBILITIES ON CO2 GEOLOGICAL SEQUESTRATION IN POLAND It covers the entire VIII KAUNAS territory of Poland and

Gdynia ALYTUS GDANSK Gdansk the Baltic economic Koszalin Elblag Suwalki Tczew

Elk zone, is focused on: OLSZTYN Neubrandenburg VII HRODNA SZCZECIN Grudziadz Stargard_Szczecinski regional studies for 8 Pila Lomza BIALYSTOK BYDGOSZCZ Ostroleka TORUN

GORZOW_wLKP. areas with saline Inowroclaw BERLIN Wloclawek Plock Gniezno Plock

Frankfurt(Oder) POZNAN Legionowo aquifers,

Konin WARSZAWA III Siedlce Pruszkow BREST VI Biala_Podlaska ZIELONA_GORA

Cottbus Leszno Zgierz hydrocarbon fields and Kalisz LODZ Glogów Ostrow_Wielkopolski Pabianice

Tomaszow_Mazowiecki Lubin Piotrkow_Trybunalski Radom Belchatow coal beds in general, I Kovel Görlitz Legnica DRESDEN Chelm WROCLAW V Starachowice Jelenia_Gora Ostrowiec_Swietokrzyski Decín Swidnica Walbrzych KIELCE TepliceUSTI_NAD_LABEM Victoria Czestochowa Novovolynsk Czestochowa Zamosc case studies for saline Most OPOLE TarnobrzegStalowa_Wola Zawiercie Chervonograd Zdzieszowice Tarnowskie_Gory Bytom Piekary_Slaskie Kedzierzyn-KozleJadwiga BytomPrzyjaznBedzinDabrowa_Gornicza II GliwiceZabrzeSwietochlowiceChorzowSiemianowice_Sl ąskie aquifer structures (4), Kladno HRADEC_KRALOVE Ruda_SlaskaSosnowiec Mielec KATOWICEMyslowice PRAHA Jaworzno Debiensko Trzebinia_EC Rybnik Tychy PARDUBICE Raciborz Krakow Radlin KRAKOW RZESZOW Zory IV Tarnow Opava Jastrzebie-Zdroj Czechowice-Dziedzice LVIV Karvina Miasta, tys. 0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 OSTRAVA Havirov Bielsko-Biala Przemysl case studies for Cities, thous. KM Frydek-Mistek OLOMOUC 50 to 99 Nowy_Sacz 100 to 249 250 to 999 JIHLAVA 1000 to 3500 Drogobych Stryj hydrocarbon fields (2) BRNO ZLIN ZILINA

CESKE_BUDEJOVICE Kalush Martin Poprad PRESOV Obszary chronione (NATURA 2000, parki narodowe) TRENCIN and coal beds (1). Protected areas (NATURA 2000, national parks) Prievidza BANSKA_BYSTRICA

Zasięg dolnej kredy (W. Górecki, 1995) Gazoci ągi Obszary górnicze (w tym MPW) LEGENDA LEGEND Lower extent (P. Karnkowski, 1993; www.rynekgazu.pl) Mining areas (including CBM - Infogeoskarb) Zasi ęg dolnej jury (W. Górecki, 1995) Gas pipelines Lower Jurassic extent Terminale gazowe (st. kompresorów, przesyłowe) GZW (zasi ęg karbonu produktywnego) Gas pipelines (compressor & transfer stations) Silesian Coal Basin ( range) reinterpretation of archive Zasięg dolnego triasu Elektrownie zawodowe, Ropoci ąg "Przyja źń " Eksperyment Recopol/MoveCBM (ECBM) emisja w kt (KPAU) (pstrego piaskowca) Druzhba oil pipeline ECBM Recopol/MoveCBM experiment Power plants, emission in kt Elektrociepłownie i ciepłownie, Lower (Bunter Ss.) extent emisja w kt (KPAU) (R. Dadlez, S. Marek, J. Pokorski, 1998) Wa żniejsze podziemne magazyny gazu i paliw Major underground gas and fuel storages Zasoby MPW 100 to 1000 CHP and heating plants, CBM fields (S. Przeniosło, 2005) emission in kt Planowane lokalizacje geotermalne Wybrane zlo ża gazu i ropy data, new data, 1000 to 5000 100 to 1000 Planned geothermal localities (P. Karnkowski, 1993; Infogeoskarb) 2 to 10 Selected gas and oil fields 5000 to 10000 1000 to 5000 Instalacje i uzdrowiska geotermalne 10 to 25 Geothermal installations and spas 10000 to 33000 Potencjal magazynowania struktur 25 to 50 naftowych (gaz i ropa), Mt Potencjal magazynowania struktur Storage capacity of hydrocarbon Przemysł wytwórczy, laboratory analyses hydrogeologicznych (Cr1, J1, T1), Mt structures, Mt emisja w kt (KPAU) Storage capacity of aquifer Manufacturing industries, Rafinerie i koksownie, structures (Cr1, J1, T1 - R. Tarkowski, 2005), Mt 0.4 to 5 Zasi ęg Zapadliska Przedkarpackiego emisja w kt (KPAU) emission in kt Carpathian Foredeep extent Conversion plants (P. Karnkowski, 1993) 100 to 1000 5 to 10 emission in kt 100 to 500 Front nasuni ęcia Karpat 1000 to 5000 Carpathian front (P. Karnkowski, 1993) 100 to 1000 10 to 50 1000 to 6000 5000 to 10000 Zasi ęg czerwonego sp ągowca 500 to 1100 50 to 150 Rotliegend range (P. Karnkowski, 1993) Naturalne ekshalacje CO2 Natural CO2 seeps Estimations of CO2 storage capacity (PL)*

Storage potential, Type Mt CASTOR 3 752 EU GeoCapacity 3 522 CO2 Atlas of Poland 8 299 Cr1, J1, T formations (upper limits) ~90 000 Hydrocarbon fields (31 structures) 764 Coal seams (selected CBM fields at depth of 1-2 km) 414 Coal seams within Polish SCB at depth of 1-2 km 1 254 SUM 5-9.5 Gt SUM ~92 Gt Saline (Mezozoic) aquifers are of biggest potential and sufficient to store emissions of big plants, Hydrocarbon fields (mostly gas) are of small capacity, Coal seams (methane recovery) are of local importance (SCB), the technology needs to be developed

*Emission of industrial installations – 200 Mt/yr Region I (Bełchatów) – structure B-Z – 3D model

Capacity – up to 370 Mt The needs - PGE 45 Mt; PKE&ZAK 73 Mt) Sequestration systems: - Composed of a couplet: porous reservoir formation (i.e. ) covered with non- permeable seal rocks (i.e. ) - Wide lateral extend and stable parameters - Depth minimum 800 m

- Not to far from emitent of CO2 Sequestration systems Period Epoch Aquifer Seal Major sequestration Holocene Pleistocene Neogene Pliocene systems in Poland Miocene Oligocene Paleogene Eocene Paleocene

Upper Cretaceous Upper (reservoir) - Lower Cretaceous (seal) – most pomising one Lower Cretaceous

Upper Jurassic (Malm)

Jurassic Middle Jurassic (Dogger) Pliensba- Toarcian Lower Jurassic (Liassic) chian Upper Triassic (Keuper & Rhaetian)

Triassic Middle Triassic (Muschelkalk)

Lower Triassic (Bunter Ss. & Roet)

Upper Permian (Zechstein) Permian

Lower Permian (Rotliegend) basin in Central Europe

After: Ziegler, 1990, emended Lithostratigraphy of the Lower Jurassic of Poland

VIII Late Pliensbachian – relatively colder and drier conditions, in the same time glaciations beyond the Polar Circle, rapid sea-level changes, thick formations deposited in river valleys and deltaic plains

Bartoszyce Mechowo

Gorzów Wlkp. WARSZAWA Pozna ń Pobiedziska

Kalisz Radom

Cz ęstochowa Kielce VI Upper Pliensbachian Upper Pliensbachian - Drzewica/Blanowice/Komorowo Fm. Lower Toarcian – rapid warming, humid, greenhouse conditions, , deposition of widespread formation (Ciechocinek Formation).

Kamie ń Pomorski Bartoszyce Mechowo Chabowo

Gorzów Wlkp. WARSZAWA Pozna ń Pobiedziska

Kalisz Radom

Cz ęstochowa Kielce VIII b (mfs) Early Toarcian

Tenuicostatum biochronozone Within the mudstones – recurrent deltaic progradations Sedimentary basin was widespread and relatively shallow (between a few and 40 m)

Green-gray mudstones

Plant roots – in marginal parts of the basin

Sideritic nodules Question of safety – continental and marginal-marine formations are usually discontinuous (lens-shaped). This can eliminate such a seal as the safe one

How to correlate formations between the boreholes, if we do not have leading fossils? Key problem: security Social response/political decissions – crucial for the future of the CCS method

FAQ: Can CO2 escape to the surface and endanger humans?

Answer: seal integrity Can we prove it? Scientific reinforcement is needed Chemostratigraphy, carbon isotopes, comparison with marine profiles Can we identify carbon isotope fluctuations in atmospheric system? Yes, we can – in microscopic palynomaceral separates – phytoclasts, which are common in non-marine/marginal-marine Jurassic rocks in Poland

Charcoal Cuticle

Miospores (excluded from C Charcoal isotope samples) Miospores Cuticle (excluded Cuticle from C Wood isotope samples)

100 µm = 0,1 mm Polish-British high – resolution correlation Yorkshire Orbital cycles - carbon isotope correlation – palaeoclimate fluctuations, depositional conditions, rock types – proof that seal rock is isochronous (integral) over the whole Polish basin Shallowing epizodes – less permeable rocks are always separated by non-permeable mudstones

NW POLAND UPPER TOARCIAN S POLAND LOWER TOARCIAN PLIENSBACHIAN This correlation can be traced over large areas, using seismic reflection profiles Kaszewy,Drzewica and Ciechocinek Fm. – multi-storey sequestration systems KASZEWY 1 KASZEWY 1

126 Diplocraterion retruzywny-protruzywny 3 ch. 140 ch. 3-5 cr.-f.p. 1230 1155 K-294 3 ch. A.M. K-249 3-6 K-248 ch. 3-8 1235 1160 AB- K-247 ch. A.M. 3 K-246 d.ch. IX K-293 K-245 K-244 K-292 3-8 f.d. D VIII c K-243 K-242 ch. 1240 K-241 3-2 1165 K-240 p.d.- K-239 o.s. K-238 K-291 K-237 K-236 ch. K-235 S K-234 K-290 8-3 122-123 K-233 K-232 o.s. K-231 1170 1245 K-230 3 K-229 K-289 o.s.- 121 K-228 143 s.f. K-225 K-224 K-223 o.s. 3-8 120 K-288 K-222 s.f. 111-119 2-3 1175 1250 K-221 S o.s.- VIII b 3 s.f. 3 K-220 VIII g K-287 115 K-219 s.f.-o.s. 2-3 s.f. s.f. S K-218 K-286 o.s.- 8 K-217 o.s.-L 3 K-285 3-5 o.s. l 140 s.f. 1180 1255 K-216 d.pl.- 2-3 K-284 s.f.- K-215 -cr.- D o.s. -t. K-214 3 K-283 o.s.- K-213 l.v.- VIII a 139 K-282 s.f. c.r. K-281 A.M. 2-3 1185 K-280 s.f. 1260 K-279 K-278 ch. K-277 K-212 3 VIII f K-276 K-275 o.s. K-274 3 8-3 K-273 K-211 o.s. S K-272 o.s.-L 8-6 VII b d.ch. K-271 D-S 1190 1265 K-210 f.d.-s.f. 2 b K-270 ch. VIII e K-269 VII a K-209 A.M. L s K-268 ch. K-267 1195 K-266 K-208 8-3 K-265 o.s.-L B- 1270 K-207 o.s. 139 K-264 K-263 L o.s.-s.f. 3 s.f.- 2 S VI d 137, 138 K-262 b K-261 K-206 o.s. 8-3 K-260 K-205 o.s.-L K-259 3 K-204 VIII d 1200 4 w K-258 s 1275 K-203 K-257 K-202 L-m B- K-256 K-201 L 3 f.s.-b. 8-3 K-255 2 K-254 3-6 s.f. K-253 D K-200 1205 K-252 3 1280 m.o.s. K-199 s.f.-f.s. ch. VI c 2 s.f. S C 1210 3 Tragophylloceras cf. loscombi Sow . o.s. ch. 1285 K-198 K-251 2 K-197 s.f. 3 1227,3 - 1232 m. o.s. 3 s.f. ch. K-196 o.s. s.f. 1215 32 1290 o.s. A.M.- K-195 L-i.b. -AB 3-4 K-250 ch. 2 s.f.- f.d. S- ch. 3-6 o.s.-L (D) 1220 Conostichus isp. K-194 1295 ch. 3 o.s.-L VI b K-193 L 3 f.s.-b. B- VIII c 2 s.f.-f.s. ch. L 1225 s.f. 1300 110 K-192 S 109 108 K-191 3 o.s. d.ch. D

Teichichnus isp. 1230

1305 Kaszewy 1 – sequence boundaries – beginnings of reservoirs; maximum flooding surfaces – key seal formations 7. L. , U. Aalenian – Zasi ęg Ultimate seal regionalny

6. Sequence IX, X, XI, U. Toarcian – Lower Aalenian

5. Sequences V, VI, VII, VIII, U. Pliensbachian – L. Toarcian seal – main system

4. Sequence III, IV, U. – L. Pliensbachian

3. Sequence III, U. Sinemurian

2. Sequence I - II, U. – L. Sinemurian

1. Sequence I, Hettangian

Over- regional ranges Sleipner experience Sleipner storage site, Utsira saline aquifers – from 1996 till 2006 8,4 mln ton), no traces of CO2 leaks Multistorey sequestration (not planned) – effect of presence of thin (<8 m) mudstone barriers

200 m

Efektywne bariery – ok. 8 m

800 m Conclusions:

• High-resolution sedimentological and isotope analyses allow confident prediction of properties of reservoir and seal formations and their accurate lateral correlation • Reservoir/seal formation couplet of verified lateral extension and integrity is a sequestration • Multistorey seguestration systems in a suiltable tectonical structure is an optimal solution in terms of safety and economy of the CCS method