A New Perspective on Finding the Viewpoint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthographic and Perspective Projection—Part 1 Drawing As
I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 •History • Geometrical Constructions 3D Viewing I • Types of Projection • Projection in Computer Graphics Andries van Dam September 15, 2005 3D Viewing I Andries van Dam September 15, 2005 3D Viewing I 1/38 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC: earliest known technical • Painting based on mythical tale as told by Pliny the drawing in existence Elder: Corinthian man traces shadow of departing lover Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) detail from The Invention of Drawing, 1830: Karl Friedrich • Roman architect Vitruvius published specifications of plan / elevation drawings, perspective. Illustrations Schinkle (Mitchell p.1) for these writings have been lost Andries van Dam September 15, 2005 3D Viewing I 2/38 Andries van Dam September 15, 2005 3D Viewing I 3/38 1 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Early Perspective Perspective • Ways of invoking three dimensional space: shading • || lines converge (in 1, 2, or 3 axes) to vanishing point suggests rounded, volumetric forms; converging lines suggest spatial depth -
CS 4204 Computer Graphics 3D Views and Projection
CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane. -
Bridges Conference Paper
Bridges 2020 Conference Proceedings Dürer Machines Running Back and Forth António Bandeira Araújo Universidade Aberta, Lisbon, Portugal; [email protected] Abstract In this workshop we will use Dürer machines, both physical (made of thread) and virtual (made of lines) to create anamorphic illusions of objects made up of simple boxes, these being the building blocks for more complex illusions. We will consider monocular oblique anamorphosis and then anaglyphic anamorphoses, to be seen with red-blue 3D glasses. Introduction In this workshop we will draw optical illusions – anamorphoses – using simple techniques of orthographic projection derived from descriptive geometry. The main part of this workshop will be adequate for anyone over 15 years of age with an interest in visual illusions, but it is especially useful for teachers of perspective and descriptive geometry. In past editions of Bridges and elsewhere at length [1, 6] I have argued that anamorphosis is a more fundamental concept than perspective, and is in fact the basic concept from which all conical perspectives – both linear and curvilinear – are derived, yet in those past Bridges workshops I have used anamorphosis only implicitly, in the creation of fisheye [4] and equirectangular [3] perspectives . This time we will instead focus on a sequence of constructions of the more traditional anamorphoses: the so-called oblique anamorphoses, that is, plane anamorphoses where the object of interest is drawn at a grazing angle to the projection plane. This sequence of constructions has been taught at Univ. Aberta in Portugal since 2013 in several courses to diverse publics; it is currently part of a course for Ph.D. -
The Encounter of the Emblematic Tradition with Optics the Anamorphic Elephant of Simon Vouet
Nuncius 31 (2016) 288–331 brill.com/nun The Encounter of the Emblematic Tradition with Optics The Anamorphic Elephant of Simon Vouet Susana Gómez López* Faculty of Philosophy, Complutense University, Madrid, Spain [email protected] Abstract In his excellent work Anamorphoses ou perspectives curieuses (1955), Baltrusaitis con- cluded the chapter on catoptric anamorphosis with an allusion to the small engraving by Hans Tröschel (1585–1628) after Simon Vouet’s drawing Eight satyrs observing an ele- phantreflectedonacylinder, the first known representation of a cylindrical anamorpho- sis made in Europe. This paper explores the Baroque intellectual and artistic context in which Vouet made his drawing, attempting to answer two central sets of questions. Firstly, why did Vouet make this image? For what purpose did he ideate such a curi- ous image? Was it commissioned or did Vouet intend to offer it to someone? And if so, to whom? A reconstruction of this story leads me to conclude that the cylindrical anamorphosis was conceived as an emblem for Prince Maurice of Savoy. Secondly, how did what was originally the project for a sophisticated emblem give rise in Paris, after the return of Vouet from Italy in 1627, to the geometrical study of catoptrical anamor- phosis? Through the study of this case, I hope to show that in early modern science the emblematic tradition was not only linked to natural history, but that insofar as it was a central feature of Baroque culture, it seeped into other branches of scientific inquiry, in this case the development of catoptrical anamorphosis. Vouet’s image is also a good example of how the visual and artistic poetics of the baroque were closely linked – to the point of being inseparable – with the scientific developments of the period. -
Anamorphosis: Optical Games with Perspective’S Playful Parent
Anamorphosis: Optical games with Perspective's Playful Parent Ant´onioAra´ujo∗ Abstract We explore conical anamorphosis in several variations and discuss its various constructions, both physical and diagrammatic. While exploring its playful aspect as a form of optical illusion, we argue against the prevalent perception of anamorphosis as a mere amusing derivative of perspective and defend the exact opposite view|that perspective is the derived concept, consisting of plane anamorphosis under arbitrary limitations and ad-hoc alterations. We show how to define vanishing points in the context of anamorphosis in a way that is valid for all anamorphs of the same set. We make brief observations regarding curvilinear perspectives, binocular anamorphoses, and color anamorphoses. Keywords: conical anamorphosis, optical illusion, perspective, curvilinear perspective, cyclorama, panorama, D¨urermachine, color anamorphosis. Introduction It is a common fallacy to assume that something playful is surely shallow. Conversely, a lack of playfulness is often taken for depth. Consider the split between the common views on anamorphosis and perspective: perspective gets all the serious gigs; it's taught at school, works at the architect's firm. What does anamorphosis do? It plays parlour tricks! What a joker! It even has a rather awkward dictionary definition: Anamorphosis: A distorted projection or drawing which appears normal when viewed from a particular point or with a suitable mirror or lens. (Oxford English Dictionary) ∗This work was supported by FCT - Funda¸c~aopara a Ci^enciae a Tecnologia, projects UID/MAT/04561/2013, UID/Multi/04019/2013. Proceedings of Recreational Mathematics Colloquium v - G4G (Europe), pp. 71{86 72 Anamorphosis: Optical games. -
Perspective As Ideology
perspective as ideology Perspective, far from being the ‘way that we naturally see’, is a highly constructed set of visual conventions that charges the visual fi eld — in and out of graphic representation occasions — with ideological mandates and presup- positions. Through the ‘instructive’ function of perspectival scenery in popular culture (print, fi lm, photography, etc.), everyday visual perception carries over the habits introduced by graphic convention. Trained to ‘see’ through ideology, perception creates the categories and identities that are readily fi lled in sense encounters, ‘proving’ the ideological basis to be ‘empirically valid’ although the ‘data’ has been ‘fi xed from the start’. It is possible to use Lacan’s L-scheme to recover the forensic pattern of ideological structuring that creates the ‘uncanny’ reversal of cause and effect so that perception appears to ‘endorse’ ideological signifi cations. 1. the cone of vision In the consolidation of ‘rules of perspective’ for application in draughting and painting, the model of the cone of vision was used to demonstrate how visual rays eminating f from the single, fi xed, open eye (binocularity would not work in perspective) could ‘cut’ imagined through an imaginary or actual picture plane to mark the relative position of objects alternative lying beyond. In this way, objects actually did represent accurately the spherical quality observer of the visual fi eld, where ‘straight’ edges appeared to be curved, as they actually were vanishing point on the surface of the retina. Geometric perspective was used to ‘correct’ this curvature and, by projecting parallel straight lines, locate vanishing points that could subsequently $ be used to regulate other lines parallel to the fi rst. -
Perpective Presentation2.Pdf
Projections transform points in n-space to m-space, where m<n. Projection is 'formed' on the view plane (planar geometric projection) rays (projectors) projected from the center of projection pass through each point of the models and intersect projection plane. In 3-D, we map points from 3-space to the projection plane (PP) (image plane) along projectors (viewing rays) emanating from the center of projection (COP): TYPES OF PROJECTION There are two basic types of projections: Perspective – center of projection is located at a finite point in three space Parallel – center of projection is located at infinity, all the projectors are parallel Plane geometric projection Parallel Perspective Orthographic Axonometric Oblique Cavalier Cabinet Trimetric Dimetric Single-point Two-point Three-point Isometric PARALLEL PROJECTION • center of projection infinitely far from view plane • projectors will be parallel to each other • need to define the direction of projection (vector) • 3 sub-types Orthographic - direction of projection is normal to view plane Axonometric – constructed by manipulating object using rotations and translations Oblique - direction of projection not normal to view plane • better for drafting / CAD applications ORTHOGRAPHIC PROJECTIONS Orthographic projections are drawings where the projectors, the observer or station point remain parallel to each other and perpendicular to the plane of projection. Orthographic projections are further subdivided into axonom etric projections and multi-view projections. Effective in technical representation of objects AXONOMETRIC The observer is at infinity & the projectors are parallel to each other and perpendicular to the plane of projection. A key feature of axonometric projections is that the object is inclined toward the plane of projection showing all three surfaces in one view. -
A New Perspective in Perspective New Technique Debating Old Hand-Drawing Perspective Methods Taught in Schools of Architecture
American Journal of Engineering, Science and Technology (AJEST) Volume 7, 2021 A New Perspective in Perspective New Technique Debating Old Hand-Drawing Perspective Methods Taught in Schools of Architecture Yasser O. El-Gammal, Saudi Arabia Abstract This paper introduces a new technique in hand-drawing perspective that is more convenient for students, instructors, and architectural design professionals - than the difficulties associated with old hand drawing methods taught in schools of architecture. The paper starts with an overview exploring origins and fundamental concepts of perspective drawing in an attempt to find a better approach in perspective drawing by investigating the works of ancient artists and painters, Afterwards; The paper proceeds with debating older perspective drawing methods taught in schools of architecture through exploring both students and instructors opinions about disadvantages of the old methods, and the recent trends in teaching perspective drawing. At the end, the paper introduces the concept of the suggested new method, its relationship with the magnification factor option in the AutoCAD universe, and its advantages, together with some early experimentation Keywords: Perspective Sketching, Perspective Drawing Method, Perspective Drawing Techniques PROBLEM Students learning perspective hand drawing in schools of architecture find old drawing methods very tedious, time consuming, and end up with unsatisfactory results, not to mention the difficulty they experience when setting the building perspective scene measurements into scale, and from within too many drawing construction lines. Although both undergraduates and architects nowadays are heavily depending on 3Dimensional computer software for developing accurate perspective scenes; There will always still the need for using perspective hand-drawing; Since every architectural concept starts with a hand-drawn sketch. -
From 3D to 2D: Orthographic and Perspective Projection—Part 1
I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 • History • Geometrical Constructions • Types of Projection • Projection in Computer Graphics Andries van Dam September 13, 2001 3D Viewing I 1/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection • A painting based on a mythical tale as told by Pliny the Elder: a Corinthian man traces the shadow of his departing lover detail from The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell p.1) Andries van Dam September 13, 2001 3D Viewing I 2/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC is earliest known technical drawing in existence Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) • Vitruvius, a Roman architect, published specifications of plan and elevation drawings, and perspective. Illustrations for these writings have been lost Andries van Dam September 13, 2001 3D Viewing I 3/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Perspective • || lines converge (in 1, 2, or 3 axes) to a vanishing point • Objects farther away are more foreshortened (i.e., smaller) than closer ones • Example: perspective cube edges same size, with farther ones smaller parallel edges converging Andries van Dam September 13, 2001 3D Viewing I 4/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Early Perspective -
The Historiography of Perspective and Reflexy-Const in Netherlandish
The Historiography of Perspective and Reflexy-Const in Netherlandish Art Sven Dupré Introduction In The Heritage of Apelles Ernst Gombrich famously drew a distinction between art North and South of the Alps along optical lines. Painters in fifteenth-century Florence, such as Domenico Veneziano, used different optical features than their contemporaries in Bruges, the likes of Jan Van Eyck, to create the illusion of space. Gombrich commented: „We all associate Florentine art with the development of central perspective, and thus with the mathematical method of revealing form in ambient light. The other aspect of optical theory, the reaction of light to various surfaces, was first explored in modern times by painters North of the Alps. It was there that the mastery of lustre, sparkle and glitter was first achieved, permitting the artist to convey the peculiar character of materials. Indeed, for a time, during the first decades of the fifteenth century, the two schools of painting appeared thus to have divided the kingdom of appearances between them.‟1 While Italian painters of the fifteenth century used perspective, Netherlandish artists studied and painted the reflection of light from surfaces of different textures and materials to create the illusion of space. For Gombrich, the point of contact between North and South was Leonardo da Vinci, „the greatest explorer of natural appearances‟, who must have been „a keen student of Northern painting‟.2 Here I am less interested in Gombrich‟s geography of optics, but more in how his juxtaposition of perspective and painterly light reflects and complicates the historiography of perspective. For reasons which fall outside the scope of this paper, since the seminal work of 1 Erwin Panofsky linear perspective has become a locus classicus of the study of artistic practice and science, and the history of perspective, which Panofsky in Die Perspektive als symbolische Form (1927) disconnected from optics, a field of research of its own, independent from the history of science and the history of art. -
Mathematics, Philosophy, and the "Real World"
Topic “Pure intellectual stimulation that can be popped into Science Subtopic the [audio or video player] anytime.” & Mathematics Mathematics —Harvard Magazine Mathematics, Philosophy, and the “Real World” “Real the and Philosophy, Mathematics, “Passionate, erudite, living legend lecturers. Academia’s best lecturers are being captured on tape.” Mathematics, Philosophy, —The Los Angeles Times and the “Real World” “A serious force in American education.” —The Wall Street Journal Course Guidebook Professor Judith V. Grabiner Pitzer College Professor Judith V. Grabiner is the Flora Sanborn Pitzer Professor of Mathematics at Pitzer College, where she has taught for more than 20 years. Her acclaimed teaching style, which focuses on the fun in mathematics, has won her numerous awards. These include the Mathematical Association of America’s Deborah and Franklin Tepper Haimo Award for Distinguished College or University Teaching of Mathematics—one of the most prestigious mathematics awards in the United States. THE GREAT COURSES® Corporate Headquarters 4840 Westfields Boulevard, Suite 500 Chantilly, VA 20151-2299 Guidebook USA Phone: 1-800-832-2412 www.thegreatcourses.com Cover Image: © marekuliasz/Shutterstock. Course No. 1440 © 2009 The Teaching Company. PB1440A PUBLISHED BY: THE GREAT COURSES Corporate Headquarters 4840 Westfi elds Boulevard, Suite 500 Chantilly, Virginia 20151-2299 Phone: 1-800-832-2412 Fax: 703-378-3819 www.thegreatcourses.com Copyright © The Teaching Company, 2009 Printed in the United States of America This book is in copyright. All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of The Teaching Company. -
Anamorphic Perspective & Illusory Architecture
Anamorphic Perspective & Illusory Architecture 31.07.2003 11:24 Uhr Anamorphic Perspective & Illusory Architecture ! Dr. Tomás García Salgado, BSArch, MSArch, PhD, UNAMprize, SNIm. Faculty of Architecture, National Autonomus University of México. mailto:[email protected] ! Abstract namorphic perspective can be sometimes quite paradoxical. This is the case with the famous false vault by Andrea Pozzo at Saint Ignatius in Rome. Pozzo himself did not consider this painting as an anamorphic projection, but it is indeed. Pozzo deduced the correct perspective drawing for the large canvas (intelaiautura), but what the observer sees is quite different. This article is divided into three A úterest. The parts that can be read separately depending upon the reader’s in first part gives us an historical review through some treatises related to the subject and some famous masterpieces. The second part deals with the principles that govern anamorphic perspective, considering the basic cases of projection. One of these cases is preúsented in detail in this part. Finally, the third part is devoted to the analysis of the vaults of Sant’Ignazio and Collegio Romano by means of the author’s method, termed Modular Perúspective. For a better understanding of the origin of Saint Ignatius’s vault, we include a brief historical background in order to grasp the idea that Pozzo’s painting is fundamentally an architectural solution instead of a purely pictorial exercise. 1. Historical Background It is quite common to encounter the theme of anamorphic perspective in the standard literature for all types of applications, from portraits to murals and scenography, to architecture itself.