Reliable RFID Communication and Positioning System for Industrial Iot
Total Page:16
File Type:pdf, Size:1020Kb
Reliable RFID Communication and Positioning System for Industrial IoT CHUANYING ZHAI Doctoral Thesis in Information and Communication Technology School of Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden 2016 KTH School of Information and Communication Technology TRITA-ICT 2016:29 SE-164 40 Stockholm ISBN 978-91-7729-165-7 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i Informations- och kommunikationsteknik måndagen den 12 december 2016 klockan 14.00 i Sal C, Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista. © Chuanying Zhai, October 2016 Tryck: Universitetsservice US AB iii Abstract The Internet of Things (IoT) has the vision to interconnect everything of the physical world and the virtual world. Advanced automated and adaptive connectivity of objects, systems, and services is expected to be achieved under the IoT context, especially in the industrial environment. Industry 4.0 with the goal of intelligent and self-adaptable manufacturing is driven by the IoT. The Object Layer, where real-time and reliable information acquisition from the physical objects carried out, is the basic enabler in the 3-layer in- dustrial IoT system. Such acquisition system features deterministic access, reliable communication with failure resistance mechanism, latency-aware real- time response, deployable structure/protocol, and adaptive performance on various QoS demands. This thesis proposes a reliable RFID communication system for acqui- sition in the industrial environment. A discrete gateway structure and a contention-free communication protocol are designed to fulfill the unique sys- tem requirements. Such gateway structure offers a flexible configuration of readers and RF technologies. It enables a full duplex communication be- tween the objects and the gateway. The designed MF-TDMA protocol can enhance the failure resistance and emergency report mechanism thanks to the separation of control link and data link in the gateway. Specifically, an optional ARQ mechanism, an independent/uniform synchronization and con- trol method, and a slot allocation optimization algorithm are designed besides time-division and frequency-division multiplexing. Protocol implementations for different industrial situations illustrate the system ability for supporting the demands of various QoS. Finally, a 2.4-GHz/UWB hybrid positioning platform is explored based on the introduced RFID system. Taking advantage of the UWB technology, the positioning platform can achieve positioning accuracy from meter level to centimeter level. Hybrid tag prototype and specific communication process based on the MF-TDMA protocol are designed. An SDR UWB reader net- work, capable of evaluating multiple algorithms, is built to realize accurate positioning with an improved algorithm proposed. Keywords: 2.4-GHz/UWB hybrid positioning, industrial IoT, MF-TDMA, QoS, reliable communication, RFID iv Sammanfattning Sakernas Internet (IoT) har som vision att koppla samman allt i den fysis- ka världen med den virtuella världen. Avancerad automatiserad och adaptiv anslutning av objekt, system och tjänster förväntas att uppnås inom ramen för Sakernas Internet. Särskilt i den industriella miljön. Det är således också att betraktas som en av de viktigaste drivkrafterna för den 4:e industriella revolutionen, Industri 4.0, som har som målsättning att uppnå intelligent och självanpassningsbar tillverkning. Arkitekturen i det industriella IoT-systemet består av tre delar: Objektsla- ger, Nätverkslager och Tjänstelager. Objektslagret, där förvärvande av till- förlitlig realtidsinformation från fysiska objekt utförs, är den grundläggan- de möjliggöraren. För dylik inhämtning från Objektlagret tillämpas lämp- ligast RFID-teknik, smart sensor-chipteknik, och kommunikationsprotokoll. Informationsinhämtningssystem för industriella tillämpningar kräver determi- nistisk access, tillförlitlig kommunikation med felmotståndsmekanism. Samt väntetidsmedveten prestanda för realtidssvar, möjlighet att applicera struk- tur/protokoll i flera områden, och flexibel möjlighet för QoS-krav beroende på den specifika arbetsmiljön. I denna avhandling har ett RFID-kommunikationssystem med hög tillför- litlighet föreslagits för informations-inhämtning i industriell miljö. En diskret Gateway-struktur, där en samordnande enhet, en uppsättning avläsare, och ett konfliktfritt kommunikationsprotokoll är utformade för att uppfylla de unika systemkraven. En sådan Gateway-struktur möjliggör flexibel konfigu- ration av läsare och RF-tekniker med en koordinator. Det möjliggör också full duplex-kommunikation mellan smarta objekt och gateway. Ett adaptivt pro- tokoll, ett utvecklat MF-TDMA-protokoll, för att förbättra fel motstånd och rapportmekanism tillgodoses tack vare oberoende implementation av styrlänk och datalänk i den diskreta Gateway-strukturen. Närmare bestämt; En valfri ARQ-mekanism, en oberoende och enhetlig synkroniserings- och styrmetod och en allokeringsoptimerande algoritm tillhandahålls förutom även schema- lagd tids- och frekvens-multiplexande kommunikationssätt. Implementationer med olika industriella förhållanden visar förmågan hos systemet för att möta kraven från olika QoS. Slutligen utforskas en 2,4-GHz RF- och UWB- hybridpositioneringsplatt- form baserat på den introducerade RFID-systemet. Genom att dra full nyt- ta av den fina upplösningen i tidsdomän för UWB-tekniken, kan positione- ringsplattformen uppnå positioneringsnoggrannhet från meternivå (med 2,4 GHz RF) till centimeternivå (med UWB). En specifik kommunikationspro- cess byggd på MF-TDMA och en prototyp av en hybrid-tagg utvecklades. Ett SDR-UWB-läsarnätverk som kan använda flera algoritmer, har byggts för plattformen för att uppnå exakt positionering med en förbättrad positio- neringsalgoritm. Keywords: 2,4-GHz RF- och UWB- hybridpositionerings, industriell IoT, MF-TDMA, QoS, tillförlitlig kommunikation, RFID v Acknowledgments First, I would like to express my sincere gratitude and respect to my supervisors Prof. Hannu Tenhunen, Dr. Zhuo Zou and Prof. Lirong Zheng for the continuous support of my Ph.D study and research. I am grateful to Hannu for his patient guidance in all the time of research and writing of this thesis. I sincerely appreciate to Zhuo, my co-supervisor, without his help, I could not imagine when I can get my first journal paper published. Each progress I have made during the long PhD study, cannot be separated from his encouragement and assistance. My special thanks to Prof. Zheng for providing me the opportunity to join the iPack group. He can always bring creative ideas each time I have discussed with him. I appreciate having such good supervisors and mentors for my Ph.D life. Besides, I would like to thank Prof. Zhonghai Lu. He helped me a lot at the beginning of my PhD study. And many thanks to Dr. Qiang Chen. Dr. Chen has shared a lot of useful and interesting things in both the daily life and research experience in Sweden. Without his help, I cannot get me Swedish summary of this thesis ready. I am very grateful to the former and current members of my group for their continuous and selfless supports. Jia Mao, for his unique insights of UWB trans- mitter and receiver. The discussions with him have brought me some advice for the implementation of UWB based positioning platform from the circuit aspect. Dr. Majid Baghaei, for his prototype design UWB transmitter. Wei Ouyang, for his advice in embedded system programming. And thanks to Dr. Jue Shen, Qin Zhou, Dr. Ning Ma, Dr. Geng Yang, Dr. Zhi Zhang, Dr. Li Xie, Jie Gao, Qiansu Wan, Dr. Yi Feng, Dr. Liang Rong for accompanying me and supporting me along the research journey. Special thanks to Pei Liu and Qin, for their help of accommoda- tion. Thanks to the new PhD colleagues Kunlong Yang, and Yuxiang Huan. And I really appreciate all my friends, especially to those not mentioned, both in Sweden and in China, thank you indeed for helping me. I sincerely appreciate my colleague Amleset Kelati and Mohammad Badawi. They gave me some advice and helped me a lot during the application process of my thesis defense. Then I would like to present my gratitude to the advanced reviewer, the committee members, my opponent and the chairman for coming to attend and assist my disputation. I would also express my appreciation to all the colleagues from the PhD of- fice and Alina Munteanu for assisting the administrative work and the application process. At the end, I would like to thank my family, without your support and un- derstanding, I cannot have this valuable and memorable time in Sweden. Special thanks to my husband, for his accompany. Chuanying Zhai, Autumn 2016, Stockholm vi Contents Contents vii List of Figures ix List of Tables xii List of Acronyms xiii List of Publications xv 1 Introduction 1 1.1 Background . 1 1.1.1 The Internet of Things . 1 1.1.2 Enabling Technologies . 2 1.2 Motivation . 3 1.2.1 The Fourth Generation of Industry . 3 1.2.2 Challenges of System Implementation for the Industrial IoT . 4 1.2.3 Imperious Demand on Ubiquitous Positioning . 6 1.3 Contributions and Thesis Organization . 7 2 Industrial IoT and RFID System 11 2.1 Architecture of the Industrial IoT . 11 2.1.1 IoT System . 11 2.1.2 Characteristics of the Acquisition System . 13 2.2 Industrial IoT System . 14 2.2.1 Acquisition System Topology . 14 2.2.2 System Topology for Industrial IoT . 16 2.3 RFID System for Industrial IoT . 18 2.3.1 RFID Components . 18 2.3.2 Active RFID Technologies . 19 2.4 Protocols and Standards . 22 2.5 Summary . 24 vii viii CONTENTS 3 Reliable RFID Communication System with QoS Capability 25 3.1 Background . 25 3.2 Proposed System . 25 3.2.1 System Architecture . 25 3.2.2 MAC Protocol . 27 3.2.3 Synchronization . 28 3.2.4 Optional ARQ . 28 3.2.5 Packet . 29 3.2.6 Slot Allocation . 31 3.2.7 Communication process . 31 3.2.8 Protocol Implementation . 34 3.3 QoS Protocol Implementation . 35 3.3.1 MF-TDMA for Energy-constraint Monitoring . 35 3.3.2 MF-TDMA for Latency-constraint Tracking . 36 3.3.3 MF-TDMA for Reliability-aware Control . 41 3.3.4 Throughput and Packet Delivery Ratio . 44 3.4 Summary .