Analyzing Glacier Surface Motion Using Lidar Data

Total Page:16

File Type:pdf, Size:1020Kb

Analyzing Glacier Surface Motion Using Lidar Data remote sensing Article Analyzing Glacier Surface Motion Using LiDAR Data Jennifer W. Telling 1,*, Craig Glennie 1, Andrew G. Fountain 2 and David C. Finnegan 3 1 National Center for Airborne Laser Mapping, University of Houston, 5000 Gulf Freeway, Building 4, Room 216, Houston, TX 77204-5059, USA; [email protected] 2 Department of Geology, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA; [email protected] 3 U.S. Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory Remote Sensing/GIS Center of Excellence, ATTN: CEERD-PA-H, 72 Lyme Road, Hanover, NH 03755-1290, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-201-835-8478 Academic Editors: Guoqing Zhou, Xiaofeng Li and Prasad S. Thenkabail Received: 31 January 2017; Accepted: 14 March 2017; Published: 17 March 2017 Abstract: Understanding glacier motion is key to understanding how glaciers are growing, shrinking, and responding to changing environmental conditions. In situ observations are often difficult to collect and offer an analysis of glacier surface motion only at a few discrete points. Using light detection and ranging (LiDAR) data collected from surveys over six glaciers in Greenland and Antarctica, particle image velocimetry (PIV) was applied to temporally-spaced point clouds to detect and measure surface motion. The type and distribution of surface features, surface roughness, and spatial and temporal resolution of the data were all found to be important factors, which limited the use of PIV to four of the original six glaciers. The PIV results were found to be in good agreement with other, widely accepted, measurement techniques, including manual tracking and GPS, and offered a comprehensive distribution of velocity data points across glacier surfaces. For three glaciers in Taylor Valley, Antarctica, average velocities ranged from 0.8–2.1 m/year. For one glacier in Greenland, the average velocity was 22.1 m/day (8067 m/year). Keywords: terrestrial laser scanning; airborne laser scanning; LiDAR; morphology; glacier surface velocity 1. Introduction Glaciers are dynamic and in constant flux, and understanding glacial motion provides important information about their growth and retreat [1]. However, the size and extent of glaciers, along with challenging environmental conditions, can severely limit data collection in the field or, in particularly hazardous conditions, field work may be precluded entirely [2–4]. As remote sensing data becomes more widely available, it is becoming a primary data collection technique in the cryosphere, particularly in areas that are inaccessible to traditional field methods [2]. Traditional methods of collecting glacier velocity data rely on stakes drilled into the ice and/or GPS deployed on the glacier surface [5–8]. The optical and geodetic surveys require little post-processing but only provide data at discrete points, usually covering a fraction of the entire glacier. Remote sensing techniques, including synthetic aperture radar (SAR) and multispectral imagery, are increasingly being used to detect and monitor changes in the cryosphere [4,9–12]. In difficult to reach areas of the Himalayas, SAR has been used to measure flow velocities at the Kangshung and Khumbu Glaciers [11]. SAR was also used to measure flow velocities at the Shirase Glacier, Antarctica, and at Helheim Glacier, in Greenland [9,10,12]. Often, these methods rely on satellite based platforms, which offer regular, long duration coverage, but they can be inhibited by severe topography and viewing Remote Sens. 2017, 9, 283; doi:10.3390/rs9030283 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 283 2 of 12 Remote Sens. 2017, 9, 283 2 of 13 offerangle regular, [11,12]. Inlong addition, duration SAR coverage, tends to but have they low ca backscatteringn be inhibited intensity by severe over topography dry snow, and reducing viewing the volumeangle [11,12]. of data In collected addition, in SAR some tends environments to have low [11 backscattering,12]. intensity over dry snow, reducing the volumeTerrestrial of data and collected airborne laserin some scanning environments (TLS and [11,12]. ALS, respectively) are two active remote sensing techniquesTerrestrial that useand lightairborne detection laser and scanning ranging (TLS (LiDAR), and ALS, typically respectively) in the near-infrared are two active wavelengths, remote sensingto provide techniques precise 3Dthat elevation use light models detection of surfaces. and ranging TLS and(LiDAR), ALS have typically both beenin the used near-infrared to survey wavelengths,glaciers to create to provide highly precise detailed 3D digital elevation elevation model modelss of surfaces. (DEMs) TLS for and the ALS purpose have ofboth determining been used tointerannual survey glaciers variability to create in surface highly elevation detailed in di ordergital toelevation estimate models mass balance (DEMs) or for long-term the purpose volume of determiningchange [2,3,13 interannual,14]. variability in surface elevation in order to estimate mass balance or long- term Involume this study, change we [2,3,13,14]. use LiDAR DEMs, collected over time, to calculate glacier surface velocity using two differentIn this study, methods—particle we use LiDAR DEMs, image collected velocimetry over (PIV) time, andto calculate manual glacier tracking. surface Applying velocity PIV, using an twoimage different processing methods—particle technique [15–18 image], to LiDAR velocimetry data provides (PIV) and an opportunity manual tracking. to measure Applying velocity PIV, across an imageentire glaciersprocessing rapidly technique and the [15–18], ability to measureLiDAR data high provides resolution an nuances opportunity in the to flow measure field thatvelocity may acrossbe missed entire using glaciers other rapidly techniques. and the When ability compared to measure to other high methodsresolution such nuances as feature in the extraction, flow field that and mayother be image missed correlation using other techniques, techniques. PIV When offers compar an approached to other that methods is sensitive such to as small feature scale, extraction, locally variableand other changes. image correlation This is especially techniques, important PIV offers on glacier an approach surfaces that where is sensitive common to features small scale, may deformlocally variableslightly betweenchanges. the This collection is especially of repeat important data. Successful on glacier application surfaces of where this method common will features make another may deformtechnique slightly available between for assessing the collection velocity of ofrepeat glaciers data. and Successful other slow application moving landforms. of this method The PIV will results make anotherare compared technique to manual available tracking for assessing results and, velocity where of available,glaciers and in situother data. slow The moving new method landforms. is tested The PIVon ALS results and are TLS compared point clouds to ofmanual six glaciers tracking in Antarcticaresults and, and where Greenland, available, with in data situ covering data. The a range new methodof spatial is andtested temporal on ALS resolutions. and TLS point clouds of six glaciers in Antarctica and Greenland, with data covering a range of spatial and temporal resolutions. 2. Study Sites 2. Study Sites The horizontal surface motion for six glaciers—five from Taylor Valley, Antarctica (Canada, Commonwealth,The horizontal Rhone, surface Suess, motion Taylor) for and six one glaciers—five from Greenland from (Helheim)—was Taylor Valley, analyzedAntarctica in the(Canada, study. TaylorCommonwealth, Valley (Figure Rhone,1) is oneSuess, of theTaylor) McMurdo and one Dry from Valleys Greenland (MDV) located(Helheim)—was in East Antarctica analyzed (77.5 in the◦S, 163study.◦E). Taylor The valley Valley landscape (Figure 1) is composedis one of the of McMurdo sandy, gravelly Dry Valleys valleybottoms (MDV) located with expanses in East ofAntarctica exposed (77.5°S,bedrock 163°E). and is populatedThe valley withlandscape perennially is composed ice-covered of sandy, lakes gravelly and ephemeral valley bo streamsttoms with originating expanses from of exposedglaciers thatbedrock flow intoand theis populated valleys from with the surroundingperennially ice-covered mountains [lakes19]. Air and temperatures ephemeral averagestreams originatingabout −17 ◦ Cfrom and glaciers summer that temperatures flow into typically the valleys hover from just belowthe surrounding freezing [20 ].mountains [19]. Air temperatures average about −17 °C and summer temperatures typically hover just below freezing [20]. Figure 1. TaylorTaylor Valley, Antarctica,Antarctica, withwith CommonwealthCommonwealth (Co),(Co), Canada (Ca), SuessSuess (S), Rhone (R), and Taylor (T) Glaciers indicated. The image was retrie retrievedved from the online Earth Ex Explorer,plorer, courtesy of the NASA EOSDISEOSDIS Land Land Processes Processes Distributed Distributed Active Acti Archiveve Archive Center (LPCenter DAAC), (LP USGS/EarthDAAC), USGS/Earth Resources ResourcesObservation andObservation Science (EROS) and Center,Science Sioux (EROS) Falls, South Center, Dakota, Sioux https://earthexplorer.usgs.gov/ Falls, South Dakota,. https://earthexplorer.usgs.gov/. Remote Sens. 2017, 9, 283 3 of 12 Remote Sens. 2017, 9, 283 3 of 13 The MDV receive very little precipitation annually (3–50 mm water-equivalent) [21] and the glaciersThe move MDV only receive 0.3–20 very m/year,
Recommended publications
  • Circumpolar Mapping of Antarctic Coastal Polynyas and Landfast Sea Ice: Relationship and Variability
    Title Circumpolar Mapping of Antarctic Coastal Polynyas and Landfast Sea Ice: Relationship and Variability Author(s) Nihashi, Sohey; Ohshima, Kay I. Journal of climate, 28(9), 3650-3670 Citation https://doi.org/10.1175/JCLI-D-14-00369.1 Issue Date 2015-05-29 Doc URL http://hdl.handle.net/2115/59557 © Copyright [29 January 2015] American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC Rights §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected]. Type article File Information jcli-d-14-00369.1(1).pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 3650 JOURNAL OF CLIMATE VOLUME 28 Circumpolar Mapping of Antarctic Coastal Polynyas and Landfast Sea Ice: Relationship and Variability SOHEY NIHASHI Department of Mechanical Engineering, National Institute of Technology, Tomakomai College, Tomakomai, Hokkaido, Japan KAY I.
    [Show full text]
  • Glaciers in Equilibrium, Mcmurdo Dry Valleys, Antarctica
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 10-2016 Glaciers in Equilibrium, McMurdo Dry Valleys, Antarctica Andrew G. Fountain Portland State University, [email protected] Hassan J. Basagic Portland State University, [email protected] Spencer Niebuhr University of Minnesota - Twin Cities Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Glaciology Commons Let us know how access to this document benefits ou.y Citation Details FOUNTAIN, A.G., BASAGIC, H.J. and NIEBUHR, S. (2016) Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica, Journal of Glaciology, pp. 1–14. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Journal of Glaciology (2016), Page 1 of 14 doi: 10.1017/jog.2016.86 © The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica ANDREW G. FOUNTAIN,1 HASSAN J. BASAGIC IV,1 SPENCER NIEBUHR2 1Department of Geology, Portland State University, Portland, OR 97201, USA 2Polar Geospatial Center, University of Minnesota, St. Paul, MN 55108, USA Correspondence: Andrew G. Fountain <[email protected]> ABSTRACT. The McMurdo Dry Valleys are a cold, dry polar desert and the alpine glaciers therein exhibit small annual and seasonal mass balances, often <±0.06 m w.e.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic, e.g. 221, signify references to figures. Page numbers in bold, e.g. 60, denote references to tables.
    [Show full text]
  • Davis Valley and Forlidas Pond, Dufek Massif
    Measure 2 (2005) Annex D Management Plan for Antarctic Specially Protected Area No. 119 DAVIS VALLEY AND FORLIDAS POND, DUFEK MASSIF 1. Description of Values to be Protected Forlidas Pond (82°27'28"S, 51°16'48"W) and several ponds along the northern ice margin of the Davis Valley (82°27'30"S, 51°05'W), in the Dufek Massif, Pensacola Mountains, were originally designated as a Specially Protected Area through Recommendation XVI-9 (1991, SPA No. 23) after a proposal by the United States of America. The Area was designated on the grounds that it “contains some of the most southerly freshwater ponds known in Antarctica containing plant life” which “should be protected as examples of unique near-pristine freshwater ecosystems and their catchments”. The original Area comprised two sections approximately 500 metres apart with a combined total area of around 6 km2. It included Forlidas Pond and the meltwater ponds along the ice margin at the northern limit of the Davis Valley. The site has been rarely visited and until recently there has been little information available on the ecosystems within the Area. This Management Plan reaffirms the original reason for designation of the Area, recognizing the ponds and their associated plant life as pristine examples of a southerly freshwater habitat. However, following a field visit made in December 2003 (Hodgson and Convey, 2004) the values identified for special protection and the boundaries for the Area have been expanded as described below. The Davis Valley and the adjacent ice-free valleys is one of the most southerly ‘dry valley’ systems in Antarctica and, as of May 2005, is the most southerly protected area in Antarctica.
    [Show full text]
  • Page Numbers in Italic, Eg 221, Signify
    Index Page numbers in italic, e.g. 221, signify references to figures. Page numbers in bold, e.g. 60, denote references to tables. Adventure Subglacial Trench 220-221,221 structure 156 Alaska surface strain-rates 154-155, 154, 155, 156 Bering Glacier 60, 68, 75 tephra layer 149, 150, 151,152, 156 Black Rapids Glacier 172, 172, 173 thrust faults 153 Burroughs Glacier 60 Lambert Glacier 61, 72 Columbia Glacier 172, 173 Meserve Glacier 60, 181, 184, 184, 187, 189 Gulkana Glacier 60, 73 North Masson Range 116 Hubbard Glacier 75 South Masson Range 116 Kaskawulsh Glacier 60 South Shetland Islands 148 Malaspina Glacier 60, 68, 75 Suess Glacier, Taylor Valley 182, 187, 189 Phantom Lake 69 Taylor Glacier 11 Spencer Glacier 205 Taylor Valley 182 Twin Glacier 60 Transantarctic Mountain range 221 Variegated Glacier 61, 65, 67, 68, 76, 76, 86 Wordie Ice Shelf 61 deformation history 90, 92, 94 Ards Peninsula, Northern Ireland 307 shear zones 72, 75, 75 argillans, definition 256 strain 88, 89, 92, 94 Arrhenius relation 34 subglacial till deformation 172 Asgard Range, Antarctica 182 surging 86, 87 Astro Glacier, Canada 69 velocity 88, 89 Austerdalsbreen, Norway 60 Worthington Glacier 61, 65 Austre Broggerbreen, Svalbard 70 Amery Ice Shelf, Antarctica 61 Austre Lov+nbreen, Svalbard 70, 77 ammonium concentration, Greenland Ice Sheet Austre Okstindbreen, Norway 205 15, 16, 20 Austria anisotropy of ice Hintereisferner 60 annealing 101, 104, 106, 107, 111, 112 Langtaufererjochferner 60 c-axis orientation 100-104, 101, 103, 104, 105-107, Pasterze Glacier,
    [Show full text]
  • (ASPA) No. 119 DAVIS VALLEY and FORLIDAS POND
    Measure 6 (2010) Annex Management Plan for Antarctic Specially Protected Area (ASPA) No. 119 DAVIS VALLEY AND FORLIDAS POND, DUFEK MASSIF, PENSACOLA MOUNTAINS (51° 05' W, 82° 29' S) Introduction Davis Valley and Forlidas Pond Antarctic Specially Protected Area (ASPA) is situated within the Dufek Massif, Pensacola Mountains at 51°4'53"W, 82°29'21"S. Approximate area: 57.3 km2. The primary reason for the designation of the Area is that it contains some of the most southerly freshwater ponds with plant life known to exist in Antarctica, which represent unique examples of near-pristine freshwater ecosystems and their catchments. The geomorphology of the Area represents a unique scientific resource for the reconstruction of previous glacial and climatic events. As a consequence of its extreme remoteness and inaccessibility, the Area has experienced very little human activity and with the total number of visitors estimated to be less than 50 people. As a result, the Area has outstanding potential as a scientific reference site. Furthermore, the Area possesses outstanding wilderness and aesthetic values. The Area is one of the most southerly ‘dry valley’ systems in Antarctica and, as of March 2010, is the most southerly Antarctic Specially Protected Area (ASPA) in Antarctica. The Area was originally proposed by the United States of America and adopted through Recommendation through Recommendation XVI-9 (1991, SPA No. 23) and included Forlidas Pond (82°27'28"S, 51°16'48"W) and several ponds along the northern ice margin of the Davis Valley. The boundaries of the Area were extended to include the entire ice-free region centered on the Davis Valley through Measure 2 (2005).
    [Show full text]
  • 2004-2005 Science Planning Summary
    2004-2005 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2004-2005 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2004-2005 USAP Field Season Project Indexes Project websites List of projects by principal investigator List of projects by USAP program List of projects by institution List of projects by station List of projects by event number digits List of deploying team members Scouting In Antarctica Technical Events Media Visitors 2004-2005 USAP Field Season USAP Station Schedules Click on the station name below to retrieve a list of projects supported by that station. Austral Summer Season Austral Estimated Population Openings Winter Season Station Operational Science Openings Summer Winter 20 August 05 October 890 (weekly 23 February 187 McMurdo 2004 2004 average) 2004 (winter total) (WINFLY*) (Mainbody) 2,900 (total) 232 (weekly South 24 October 30 October 15 February 72 average) Pole 2004 2004 2004 (winter total) 650 (total) 34-44 (weekly 22 September 40 Palmer N/A 8 April 2004 average) 2004 (winter total) 75 (total) Year-round operations RV/IB NBP RV LMG Research 39 science & 32 science & staff Vessels Vessel schedules on the Internet: staff 25 crew http://www.polar.org/science/marine. 25 crew Field Camps Air Support * A limited number of science projects deploy at WinFly. 2004-2005 USAP Field Season Technical Events Every field season, the USAP sponsors a variety of technical events that are not scientific research projects but support one or more science projects.
    [Show full text]
  • Stable Water Isotopes and Accumulation Rates in the Union
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-161 Manuscript under review for journal The Cryosphere Discussion started: 4 October 2018 c Author(s) 2018. CC BY 4.0 License. Stable water isotopes and accumulation rates in the Union Glacier region, West Antarctica over the last 35 years Kirstin Hoffmann1, 2, Francisco Fernandoy3, Hanno Meyer2, Elizabeth R. Thomas4, Marcelo Aliaga3, Dieter Tetzner5, Johannes Freitag6, Thomas Opel7,2, Jorge Arigony–Neto8, Christian Florian Göbel8, 5 Ricardo Jaña9, Delia Rodríguez Oroz10, Rebecca Tuckwell4, Emily Ludlow4, Joseph R. McConnell11, Christoph Schneider1 1Department of Geography, Humboldt University Berlin, Unter den Linden 6, Berlin, 10099, Germany 2Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, Potsdam, 14473, Germany 10 3Facultad de Ingeniería, Universidad Nacional Andrés Bello, Viña del Mar, 2531015, Chile 4Ice Dynamics and Paleoclimate, British Antarctic Survey, High Cross, Cambridge, CB3 0ET, United Kingdom 5Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom 6Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany 15 7Department of Geography, Permafrost Laboratory, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom 8Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália, km 8, CEP 96201900, Rio Grande, RS, Brazil 9Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile 10Facultad de Ingeniería, Universidad del Desarrollo, Avenida Plaza 680, Santiago, Chile 11Division of Hydrologic Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA 20 Correspondence to: Kirstin Hoffmann ([email protected]) Abstract West Antarctica is well-known as a region that is highly susceptible to atmospheric and oceanic warming.
    [Show full text]
  • Spatial Variations in the Geochemistry of Glacial Meltwater Streams in the Taylor Valley, Antarctica KATHLEEN A
    Antarctic Science 22(6), 662–672 (2010) & Antarctic Science Ltd 2010 doi:10.1017/S0954102010000702 Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica KATHLEEN A. WELCH1, W. BERRY LYONS1, CARLA WHISNER1, CHRISTOPHER B. GARDNER1, MICHAEL N. GOOSEFF2, DIANE M. MCKNIGHT3 and JOHN C. PRISCU4 1The Ohio State University, Byrd Polar Research Center, 1090 Carmack Rd, 108 Scott Hall, Columbus, OH 43210, USA 2Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA 3University of Colorado, INSTAAR, Boulder, CO 80309-0450, USA 4Dept LRES, 334 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA [email protected] Abstract: Streams in the McMurdo Dry Valleys, Antarctica, flow during the summer melt season (4–12 weeks) when air temperatures are close to the freezing point of water. Because of the low precipitation rates, streams originate from glacial meltwater and flow to closed-basin lakes on the valley floor. Water samples have been collected from the streams in the Dry Valleys since the start of the McMurdo Dry Valleys Long-Term Ecological Research project in 1993 and these have been analysed for ions and nutrient chemistry. Controls such as landscape position, morphology of the channels, and biotic and abiotic processes are thought to influence the stream chemistry. Sea-salt derived ions tend to be higher in streams that are closer to the ocean and those streams that drain the Taylor Glacier in western Taylor Valley. Chemical weathering is an important process influencing stream chemistry throughout the Dry Valleys. Nutrient availability is dependent on landscape age and varies with distance from the coast.
    [Show full text]
  • Aeolian Sediments of the Mcmurdo Dry Valleys, Antarctica a Thesis Presented in Partial Fulfillment of the Requirements for the D
    Aeolian Sediments of the McMurdo Dry Valleys, Antarctica A Thesis Presented in Partial Fulfillment of the Requirements for The Degree Master of Science in the Graduate School of The Ohio State University By Kelly Marie Deuerling, B.S. Graduate Program in Geological Sciences The Ohio State University 2010 Master‘s Examination Committee: Dr. W. Berry Lyons, Advisor Dr. Michael Barton Dr. Garry D. McKenzie Copyright by Kelly Marie Deuerling 2010 ABSTRACT The role of dust has become a topic of increasing interest in the interface between climate and geological/ecological sciences. Dust emitted from major sources, the majority of which are desert regions in the Northern Hemisphere, is transported via suspension in global wind systems and incorporated into the biogeochemical cycles of the ecosystems where it is ultimately deposited. While emissions within the McMurdo Dry Valleys (MDV) region of Antarctica are small compared to other source regions, the redistribution of new, reactive material by wind may be important to sustaining life in the ecosystem. The interaction of the dry, warm foehn winds and the cool, moist coastal breezes ―recycles‖ soil particles throughout the landscape. The bulk of sediment movement occurs during foehn events in the winter that redistribute material throughout the MDV. To understand the source and transfer of this material samples were collected early in the austral summer (November 2008) prior to the initiation of extensive ice melt from glacial and lake surfaces, aeolian landforms, and elevated sediment traps. These were preserved and processed for grain size distribution and major element composition at the sand and silt particle sizes.
    [Show full text]
  • Geochemical and Isotopic Evidence for the Escape of Ice Sheet Fluids in an East Antarctic Ice Sheet Outlet Glacier, Taylor Valley, Antarctica
    Geochemical and isotopic evidence for the escape of ice sheet fluids in an East Antarctic Ice Sheet outlet glacier, Taylor Valley, Antarctica 1 1 1 1 1 Michael G. Scudder , Graham H. Edwards , Gavin G. Piccione , Terrence Blackburn , Slawek Tulaczyk 1Earth & Planetary Science Department, University of California Santa Cruz, Santa Cruz, CA, USA 5 Correspondence to: Michael Scudder ([email protected]) Abstract: The isotopic similarities between fluids beneath the East Antarctic Ice Sheet (EAIS) and the subglacial discharge found at the snout of Taylor glacier, one of the outlet glaciers located hundreds of kilometers away, implies that subglacial fluids may transit across this incredible distance. Such a model is consistent with the imaging, by airborne transient electromagnetic (ATE), of high salinity fluids at the 10 base of Taylor glacier to at least 5.75 km up-glacier from the snout, where ATE resolution fails (Mikucki et al., 2015). The transit of subglacial discharge could also be detected through the examination of basal ice, which has been hypothesized to form by subglacial freeze on of fluids at the ice-rock interface. We test these ice formation models as well search for direct evidence for the passage of subglacial discharge beneath Taylor glacier through examination of the elemental and U-Series isotopic compositions of basal 15 ice from Taylor Valley and compare with the compositions for regional lakes, streams, bedrock, and subglacial brines. For example, the basal ice from Suess Glacier, an alpine glacier draining a local accumulation zone in the Asgard Mountains, has 234U/238U and major element compositions nearly identical to surface waters and local silicates indicating mechanical entrainment of surface salts into basal ice by a cold-based formation mechanism.
    [Show full text]
  • Mcmurdo Sound, Antarctica) Report 825-2-Part IX IGY Project No
    THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION USNC-IGY ANTARCTIC GLACIOLOGICAL DATA FIELD WORK I958 AMD 1959 (Multiple Glaciation in the McMurdo Sound, Antarctica) Report 825-2-Part IX IGY Project No. U.10 NSF Grant No. Y/ii.lO/285 Troy L. Pewe' February i960 USNC-IGY ANTARCTIC GLACIOLOGICAL DATA Report Number 2i Field Work 1958-59 Part DC MULTIPLE GLACIATION IN THE McMURDO SOUND, ANTARCTICA The Ohio State University Research Foundation Colambus 12, Ohio Project 825P Report Noo 2,, Part IX Submitted to the Uo So National Committee for the IGY National. Academy of Sciences^ in partial fulfillment of IGY Project Number 4,10 - NSF Grant No. Y/lMO/285 February i960 TABLE OF CONTENTS Abstract « <> „ « „ o • „ « o • o • <> . „ • <>o 2 Introduction o » * * o <><> 2 Physical setting «, • « « „ • • * o o „ o * o * * 3 Physiography and geology <>,>*ooooo«oooo* 3 Cli mate O O » O O O O » * 0 Q O O * O O O « « O O 0 » « » O O O O 6 Glacial chronology <, • <, <> • o o o * • • «> „ <> 0 8 McMurdo Glaciation • o o • • o • • <> * • o o o <> o 8 Taylor Glaciation • . • . • . • • . o «. • • • . • * . • o o o « 12 Glacial lakes O O O O O . O O O Q ^ O O O O ^ . O O O O O O 16 Fryxwell Glaciation •••••••••••••••••••••• 16 Glacial lakes a o o . o 20 Koettlitz Glaciation • . o . « . • « . • 20 Glacial lakes o • • 23 Summary and correlation • . o . • • * • • • • • 23 References cited •••••••••••••• • 26 li LIST OF FIGURES Figure Page lo Sketch map of McMurdo Sound, Antarctica showing extent of existing glaciers * o <> . <> o o 0 <> o o • o o o o * o o o o I4
    [Show full text]