Mcmurdo Sound, Antarctica) Report 825-2-Part IX IGY Project No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geochemical Evidence for the Origin of Mirabilite Deposits Near Hobbs Glacier, Victoria Land, Antarctica
Mineral. Soc. Amer. Spec. Pap. 3, 261-272 (1970). GEOCHEMICAL EVIDENCE FOR THE ORIGIN OF MIRABILITE DEPOSITS NEAR HOBBS GLACIER, VICTORIA LAND, ANTARCTICA C. J. BOWSER, Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 T. A. RAFTER, Department of Scientific and Industrial Research, Institute of Nuclear Studies, Lower Hutt, New Zealand R. F. BLACK, Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 ABSTRACT Numerous masses of bedded and concentrated interstitial mirabilite (Na,SO.·lOH,O) occur in stagnant glacial ice and within and on top of ice-cored moraine near the terminus of Hobbs Glacier on the west coast of McMurdo Sound. Some are tabular bodies up to 50 m long and 4 m thick. They are thought to be deposits formed by freeze concentration and evaporation in supraglacial and periglacial meltwater ponds. Some deposits have been included within ice and de- formed during glacial movement. Structural features within the ice and lithology of the morainal debris indicate the moraine is a remanent mass left during retreat of the formerly extended Koettlitz Glacier presently south of the Hobbs Glacier region. Compositionally the salt masses are predominantly sodium sulfate, although K, Ca, Mg, Cl, and HC0 are also 3 present, usually in amounts totalling less than five percent of the total salts. The mirabilite content of analyzed samples constitutes from 10to nearly 100percent of the total mass: the remainder is mostly ice. Isotopically the 8D and 8018composition of water of crystallization of entrapped glacial ice falls on Craig's (1961) line 18 for meteoric water (80 range -6.8°/00 to -37.9°/00' 8D-58.5°/00 to -30JD/00, relative to S.M.O.W.). -
DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) for ANDRILL Mcmurdo Sound Portfolio Madrid, 9/20 De Junio 2003
XXVI ATCM Working Paper WP-002-NZ Agenda Item: IV CEP 4a NEW ZEALAND Original: English DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Madrid, 9/20 de junio 2003 ANDRILL - The McMurdo Sound Portfolio An international research effort with the participation of Germany, Italy, New Zealand, the United Kingdom and the United States of America. DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Antarctica New Zealand Private Bag 4745, Christchurch Administration Building International Antarctic Centre 38 Orchard Road, Christchurch January 22, 2003 2 CONTENTS 1. NON-TECHNICAL SUMMARY.....................................................................................11 2. INTRODUCTION...........................................................................................................13 2.1 What is ANDRILL?...............................................................................................13 2.2 The CEE process.................................................................................................15 2.2.1 What is a CEE and why is it needed?....................................................15 2.2.2 Process for preparing the Draft CEE .....................................................15 3. DESCRIPTION OF PROPOSED ACTIVITES ..............................................................17 2.1 Purpose and Need...............................................................................................17 3.1.1 Scientific justification..............................................................................17 -
The Commonwealth Trans-Antarctic Expedition 1955-1958
THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword .................................................................................................................................. -
Draft ASMA Plan for Dry Valleys
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
Xrf Analyses of Granitoids and Associated
X.R.F ANALYSES OF GRANITOIDS AND ASSOCIATED ROCKS FROM SOUTH VICTORIA LAND, ANTARCTICA K. Palmer Analytical Facility Victoria University of Wellington Private Bag Wellington NEW ZEALAND Contents Page 1 Introduction 1 Sample Preparation 2 Analytical Procedures 4 Acknowledgments 5 References 6 Tables of Analytical Data 11 Tables of Sample Descriptions 17 Location Maps 22 Appendix 1 23 Appendix 2 Research School of Earth Sciences Geology Board of Studies Publication No.3 Victoria University of Wellington ISSN 0113-1168 Analytical Facility Contribution No. 12 ISSN 0111-1337 Antarctic Data Series No.13 ISSN 0375-8192 1987 INTRODUCTION The granitoid rocks of South Victoria Land are represented in some of the earliest geological studies of Antarctica. Indeed as early as 1841 granitoids were dredged from the sea-floor off Victoria Land on the voyages of the Erebus and Terror. Early workers such as Ferrar and Prior described granitoids collected in situ by members of the Discovery expedition (1901-1904). Some years later further granitoid descriptions and the occasional chemical analysis were presented by such workers as David, Priestly, Mawson and Smith. In more recent times, samples collected by Gunn and Warren (1962) and analysed by the United States Geological Survey were presented in Harrington et.al. (1967). The first detailed study of granitoids in South Victoria Land was by Ghent & Henderson (1968) who, although examining only a small area in the lower Taylor Valley revealed for the first time the diverse range of granitoid types and emplacement processes in this region. This work was followed up by a relatively detailed major and trace element geochemical study, (Ghent,1970). -
University of California Santa Cruz Geophysical
UNIVERSITY OF CALIFORNIA SANTA CRUZ GEOPHYSICAL IDENTIFICATION OF SUBSURFACE WATER IN THE MCMURDO DRY VALLEYS REGION, ANTARCTICA A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in EARTH SCIENCES by Neil T. Foley June 2020 The Dissertation of Neil T. Foley is approved: _________________________________ Professor Sławomir Tulaczyk, chair _________________________________ Professor Andrew Fisher _________________________________ Assistant Professor Terrence Blackburn _________________________________ Assistant Professor Myriam Telus ____________________________ Quentin Williams Acting Vice Provost and Dean of Graduate Studies ii Table of Contents List of Figures and Tables…………….…………………………...…………iv Abstract………………….……………………………....…………….………v Acknowledgements………………….…………………………………...…viii Text Chapter 1: Helicopter-Borne Transient Electromagnetics in High-Latitude Environments: An Application in The McMurdo Dry Valleys, Antarctica………………....…1 Chapter 2: Evidence for Pathways of Concentrated Submarine Groundwater Discharge in East Antarctica from Helicopter-Borne Electrical Resistivity Measurements…………………………..………41 Chapter 3: Mapping Geothermal Heat Flux Using Permafrost Thickness Constrained by Airborne Electromagnetic Surveys on the Western Coast of Ross Island, Antarctica…………………………..………67 References………………………..…………………………...….…………..84 iii List of Figures 1.1: Instrument data and inversion……………………………….…………………....9 1.2: Instrument components..……………………………….………………………..11 1.3: Data quality, -
United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main -
Flnitflrcililcl
flNiTflRCililCl A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) svs-r^s* ■jffim Nine noses pointing home. A team of New Zealand huskies on the way back to Scott Base after a run on the sea ice of McMurdo Sound. Black Island is in the background. Pholo by Colin Monteath \f**lVOL Oy, KUNO. O OHegisierea Wellington, atNew kosi Zealand, uttice asHeadquarters, a magazine. n-.._.u—December, -*r\n*1981 SOUTH GEORGIA SOUTH SANDWICH Is- / SOUTH ORKNEY Is £ \ ^c-c--- /o Orcadas arg \ XJ FALKLAND Is /«Signy I.uk > SOUTH AMERICA / /A #Borga ) S y o w a j a p a n \ £\ ^> Molodezhnaya 4 S O U T H Q . f t / ' W E D D E L L \ f * * / ts\ xr\ussR & SHETLAND>.Ra / / lj/ n,. a nn\J c y DDRONNING d y ^ j MAUD LAND E N D E R B Y \ ) y ^ / Is J C^x. ' S/ E A /CCA« « • * C",.,/? O AT S LrriATCN d I / LAND TV^ ANTARCTIC \V DrushsnRY,a«feneral Be|!rano ARG y\\ Mawson MAC ROBERTSON LAND\ \ aust /PENINSULA'5^ *^Rcjnne J <S\ (see map below) VliAr^PSobral arg \ ^ \ V D a v i s a u s t . 3_ Siple _ South Pole • | U SA l V M I IAmundsen-Scott I U I I U i L ' l I QUEEN MARY LAND ^Mir"Y {ViELLSWORTHTTH \ -^ USA / j ,pt USSR. ND \ *, \ Vfrs'L LAND *; / °VoStOk USSR./ ft' /"^/ A\ /■■"j■ - D:':-V ^%. J ^ , MARIE BYRD\Jx^:/ce She/f-V^ WILKES LAND ,-TERRE , LAND \y ADELIE ,'J GEORGE VLrJ --Dumont d'Urville france Leningradskaya USSR ,- 'BALLENY Is ANTARCTIC PENIMSULA 1 Teniente Matienzo arg 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Deception arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 9 P r e s i d e n t e F r e i c h i l e : O 5 0 0 1 0 0 0 K i l o m e t r e s 10 Stonington I. -
Glaciers in Equilibrium, Mcmurdo Dry Valleys, Antarctica
Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 10-2016 Glaciers in Equilibrium, McMurdo Dry Valleys, Antarctica Andrew G. Fountain Portland State University, [email protected] Hassan J. Basagic Portland State University, [email protected] Spencer Niebuhr University of Minnesota - Twin Cities Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Glaciology Commons Let us know how access to this document benefits ou.y Citation Details FOUNTAIN, A.G., BASAGIC, H.J. and NIEBUHR, S. (2016) Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica, Journal of Glaciology, pp. 1–14. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Journal of Glaciology (2016), Page 1 of 14 doi: 10.1017/jog.2016.86 © The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica ANDREW G. FOUNTAIN,1 HASSAN J. BASAGIC IV,1 SPENCER NIEBUHR2 1Department of Geology, Portland State University, Portland, OR 97201, USA 2Polar Geospatial Center, University of Minnesota, St. Paul, MN 55108, USA Correspondence: Andrew G. Fountain <[email protected]> ABSTRACT. The McMurdo Dry Valleys are a cold, dry polar desert and the alpine glaciers therein exhibit small annual and seasonal mass balances, often <±0.06 m w.e. -
Silicon Isotopes Reveal a Non-Glacial Source of Silicon to Crescent Stream, Mcmurdo Dry Valleys, Antarctica
Hirst, C., Opfergelt, S., Gaspard, F., Hendry, K., Hatton, J., Welch, S., Mcknight, D., & Lyons, W. B. (2020). Silicon isotopes reveal a non- glacial source of silicon to Crescent Stream, McMurdo Dry Valleys, Antarctica. Frontiers in Marine Science, 8, [229]. https://doi.org/10.3389/feart.2020.00229 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.3389/feart.2020.00229 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Frontiers Media at https://www.frontiersin.org/articles/10.3389/feart.2020.00229/full. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ feart-08-00229 June 26, 2020 Time: 15:43 # 1 ORIGINAL RESEARCH published: 26 June 2020 doi: 10.3389/feart.2020.00229 Silicon Isotopes Reveal a Non-glacial Source of Silicon to Crescent Stream, McMurdo Dry Valleys, Antarctica Catherine Hirst1*, Sophie Opfergelt1, François Gaspard1, Katharine R. Hendry2, Jade E. Hatton2, Susan Welch3, Diane M. McKnight4 and W. Berry Lyons3 1 Earth and Life Institute, Environmental Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom, 3 School of Earth Sciences, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States, 4 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States In high latitude environments, silicon is supplied to river waters by both glacial and non- glacial chemical weathering. -
Back Matter (PDF)
Index Page numbers in italic, e.g. 221, signify references to figures. Page numbers in bold, e.g. 60, denote references to tables. -
Thesis Approval
THESIS APPROVAL The abstract and thesis of Robin Rachelle Johnston for the Master of Science in Geology presented February 12, 2004, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: ________________________________________ Andrew G. Fountain, Chair ________________________________________ Christina L. Hulbe ________________________________________ Martin J. Streck ________________________________________ Aslam Khalil Representative of the Office of Graduate Studies DEPARTMENTAL APPROVAL: ________________________________________ Michael L. Cummings, Chair Department of Geology ABSTRACT An abstract of the thesis of Robin Rachelle Johnston for the Master of Science in Geology presented February 12, 2004 Title: Channel Morphology and Surface Energy Balance on Taylor Glacier, Taylor Valley, Antarctica Deeply-incised channels on Taylor Glacier in Taylor Valley, Antarctica initiate as medial moraines traced tens of kilometers up-glacier, are aligned with the direction of flow, and at their most developed occupy about 40% of the ablation zone in the lower reaches of the glacier. Development of the South Channel occurs in three stages. The first stage, the 1st Steady State, is characterized by rather uniform development, where the channel widens at much less than 0.1 m yr-1 and deepens at much less than 0.01 m yr-1, maintaining a width to depth ratio of about 8. The second stage, the Transition Phase, is characterized by dramatic widening channel (from 10 to 110 m) and deepening (from 2 to 24 m). During this stage, the peak rate of widening is about 1.5 m yr-1 and the channel is about 25 times as wide as it is deep. The third stage of channel development, the 2nd Steady State, is characterized by a steady decrease in the rate of channel deepening and a leveling off of the width to depth ratio as the channel ceases to widen.