Thesis Approval

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Approval THESIS APPROVAL The abstract and thesis of Robin Rachelle Johnston for the Master of Science in Geology presented February 12, 2004, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: ________________________________________ Andrew G. Fountain, Chair ________________________________________ Christina L. Hulbe ________________________________________ Martin J. Streck ________________________________________ Aslam Khalil Representative of the Office of Graduate Studies DEPARTMENTAL APPROVAL: ________________________________________ Michael L. Cummings, Chair Department of Geology ABSTRACT An abstract of the thesis of Robin Rachelle Johnston for the Master of Science in Geology presented February 12, 2004 Title: Channel Morphology and Surface Energy Balance on Taylor Glacier, Taylor Valley, Antarctica Deeply-incised channels on Taylor Glacier in Taylor Valley, Antarctica initiate as medial moraines traced tens of kilometers up-glacier, are aligned with the direction of flow, and at their most developed occupy about 40% of the ablation zone in the lower reaches of the glacier. Development of the South Channel occurs in three stages. The first stage, the 1st Steady State, is characterized by rather uniform development, where the channel widens at much less than 0.1 m yr-1 and deepens at much less than 0.01 m yr-1, maintaining a width to depth ratio of about 8. The second stage, the Transition Phase, is characterized by dramatic widening channel (from 10 to 110 m) and deepening (from 2 to 24 m). During this stage, the peak rate of widening is about 1.5 m yr-1 and the channel is about 25 times as wide as it is deep. The third stage of channel development, the 2nd Steady State, is characterized by a steady decrease in the rate of channel deepening and a leveling off of the width to depth ratio as the channel ceases to widen. Eventually, the channel reaches a new near equilibrium state of continued uniform development where the width to depth ratio is about 4. The microclimate within the channels differs significantly from conditions on the adjacent glacier surface. The channels are warmer by 1.7°C, have wind speeds reduced by 2.4 m s-1, and the net shortwave radiation is greater by about 14 W m-2 compared to the glacier surface. As a result, melt makes up a much higher percentage of the total ablation within the channels than it does on the glacier surface – as much as 75% and perhaps up to 99% under extremely low wind regimes, compared to about 45%. While the altered microclimate within the channels drives their rapid development during the Transition Phase, the relationship between average wall slopes and solar angles may represent the channels coming into equilibrium with the solar regime in the valley. CHANNEL MORPHOLOGY AND SURFACE ENERGY BALANCE ON TAYLOR GLACIER, TAYLOR VALLEY, ANTARCTICA by ROBIN RACHELLE JOHNSTON A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in GEOLOGY Portland State University 2004 DEDICATION Dedicated with enormous gratitude to my dear sister and friend, Kim Kathline Johnston - who teaches much to many - for her extraordinary love and untiring support throughout time. Sis, thank you for taking this journey with me. A grand journey it has been, shaped and colored by a multitude of nobulets and rainwedges. May we forever be able to recognize them in our world, and may they be abundant. I love you so much. i ACKNOWLEDGEMENTS I owe much thanks to many people: my advisor, Andrew Fountain, for making my graduate studies so interesting; my committee members, Christina Hulbe, Martin Streck, and Aslam Khalil, for their insight; Thomas Nylen, for being a great field partner and office mate; and the entire staff of the Geology Department, all of whom strive for excellence. There are others to thank as well: Karen Lewis, for sharing her knowledge; Jennifer Horsman and Chris Jaros, for their efforts to provide me with aerial photographs of Taylor Valley; Rae Spain for her superb operations of Lake Hoare Camp and her friendship; Kathy Welsh, for making being at McMurdo all the more interesting; the operation controllers and pilots at McMurdo HeloOps; and Jeff Scanniello, Chuck Kurnik, Dennis Kenley, Forrest McCarthy, Bill McCormick, and many others who helped with field support in Taylor Valley. There isn’t enough thanks in the world for the friendship and support of William Schryver, the man of a thousand pertinent questions. To my good friends Michelle Cunico-Johnson, Julie Griswold, Meg Lunney, Christina Hulbe, and Nancy Erikkson – I do, and shall, miss sharing time with you daily. I’ve made many other friends along the way for whom I’m grateful. I send special thanks to Murphy Johnston for his fuzzy, warm companionship. And thank you Kim, for everything. The National Science Foundation (NSF) provided funding for this work as part of the NSF Long-Term Ecological Research (LTER) program through grant number OPP-9810219. It was my good fortunate to be involved in this incredible project. ii Table of Contents Acknowledgements ............................................................................................................ii List of Figures.................................................................................................................... v List of Tables...................................................................................................................xiii 1 Introduction...................................................................................................................1 1.1 Geographic Setting.........................................................................................4 1.2 Glacial Characteristics....................................................................................6 1.3 Glacial History................................................................................................8 2 Surface Features and Debris Distribution on Glaciers in Taylor Valley....................10 2.1 Surface Features ...........................................................................................10 2.2 Aligned and Transverse Features .................................................................20 2.3 Sediment Distribution...................................................................................23 3 Channel Morphology and Meteorological Measurements .........................................28 3.1 Channel Geometry........................................................................................29 3.1.1 Observations .....................................................................................30 3.2 Albedo ..........................................................................................................38 3.2.1 Observations .....................................................................................38 3.3 Cryoconite Holes ..........................................................................................41 3.3.1 Observations .....................................................................................44 3.4 Surface and Channel Meteorological Data...................................................47 3.4.1 Observations .....................................................................................49 3.5 Channel Morphology – A Working Hypothesis...........................................58 iii 4 Energy Balance...........................................................................................................66 4.1 Energy Balance Model.................................................................................67 4.1.1 Radiative Heat Flux..........................................................................69 4.1.2 Turbulent Heat Fluxes ......................................................................71 4.1.3 Ice Heat Flux ....................................................................................73 4.2 Energy Balance Model Results ....................................................................74 4.2.1 Established Met Station: 1994-1995 ................................................78 4.2.2 Channel Energy Balance ..................................................................80 4.2.3 Error and Sensitivity Analysis ..........................................................84 4.2.4 Meltwater Contribution to Lake Bonney..........................................88 4.3 Energy Balance Discussion..........................................................................90 5 Conclusions.................................................................................................................92 6 References...................................................................................................................96 Appendix A – Survey Data Sample...............................................................................100 Appendix B - South Channel Cross-Sections................................................................101 Appendix C - North Channel Cross-Sections................................................................106 Appendix D - Ice Speed and Radar Data.......................................................................112 Appendix E - Rate of Change in Width, Depth, and Width to Depth Ratio .................113 Appendix F – Geographic Location of Stakes, Cross-Sections, and Met Station.........116 iv List of Figures Figure 1.1 – Satellite image of the McMurdo Dry Valleys (NSF, 1999). Upper inset shows location of larger image...............................................................................2
Recommended publications
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • 2006-2007 Science Planning Summaries
    Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the available indexes. Project Web Sites Find more information about 2006-2007 USAP projects by viewing project web sites. More Information Additional information pertaining to the 2006-2007 Field Season. Home Page Station Schedules Air Operations Staffed Field Camps Event Numbering System 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the USAP Program Indexes available indexes. Aeronomy and Astrophysics Dr. Bernard Lettau, Program Director (acting) Project Web Sites Biology and Medicine Dr. Roberta Marinelli, Program Director Find more information about 2006-2007 USAP projects by Geology and Geophysics viewing project web sites. Dr. Thomas Wagner, Program Director Glaciology Dr. Julie Palais, Program Director More Information Ocean and Climate Systems Additional information pertaining Dr. Bernhard Lettau, Program Director to the 2006-2007 Field Season. Artists and Writers Home Page Ms. Kim Silverman, Program Director Station Schedules USAP Station and Vessel Indexes Air Operations Staffed Field Camps Amundsen-Scott South Pole Station Event Numbering System McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects Principal Investigator Index Deploying Team Members Index Institution Index Event Number Index Technical Event Index Project Web Sites 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the Project Web Sites available indexes. Principal Investigator/Link Event No. Project Title Aghion, Anne W-218-M Works and days: An antarctic Project Web Sites chronicle Find more information about 2006-2007 USAP projects by Ainley, David B-031-M Adélie penguin response to viewing project web sites.
    [Show full text]
  • TAM Abstract Adams B
    Interdisciplinary Antarctic Earth Sciences Meeting and Shackleton Camp Planning Workshop Loveland, Colorado September 19-22, 2015 Agenda and Abstracts Agenda Saturday, Sept. 19 Time Activity place 3-7 pm Badge pickup, guest arrival, poster Heritage Lodge set up Dining tent 5:30 pm Shuttles to Sylvan Dale Hotels à Sylvan Dale 6 – 7:30 pm Dinner, cash bar Dining tent 7:30 – 9:30pm Cash bar, campfire Dining tent 8:30 & 9 pm Shuttles back to hotels Sylvan DaleàHotels Sunday, Sept. 20 Time Activity place 7 – 8:30 am Breakfast for overnight guests only 7:15 am Shuttles depart hotels Hotels à Sylvan Dale 7:30 – 8:30 Badge pickup & poster set up Heritage Lodge & tent 8:30 – 10:00 Session I Heritage Lodge 8:30 – 8:45 Opening Remarks 8:45 – 9:15 NSF remarks - Borg 9:15 – 9:45 Antar. Support Contr – Leslie, Jen, et al. 9:45 – 10:00 Polar Geospatial Center - Roth 10:00 – 10:30 Coffee/Snack Break 10:30 – 10:45 Polar Rock Repository - Grunow 10:45 – 12:00 John Calderazzo – Sci. Communication 12:00 – 1:30 pm Lunch Dining Tent 1:30 – 3:00 Session II Heritage Lodge Geological and Landscape Evolution 1:30 - 1:50 Thomson (invited) 1:50 - 2:10 Collinson (invited) 2:10 – 2:25 Flaig 2:25 – 2:40 Isbell 2:40 – 2:55 Graly 3:00 – 3:45 Coffee/Snack break 3:45 – 4:00 Putokonen 4:00 – 4:15 Sletten 4:15 – 4:35 Poster Introductions 4:35 – 6:00 Posters Dining tent 6:00 Dinner, cash bar Dining tent 8:30 & 9:00 Shuttles back to hotels Sylvan DaleàHotels 1 Monday, Sept.
    [Show full text]
  • U.S. Advance Exchange of Operational Information, 2005-2006
    Advance Exchange of Operational Information on Antarctic Activities for the 2005–2006 season United States Antarctic Program Office of Polar Programs National Science Foundation Advance Exchange of Operational Information on Antarctic Activities for 2005/2006 Season Country: UNITED STATES Date Submitted: October 2005 SECTION 1 SHIP OPERATIONS Commercial charter KRASIN Nov. 21, 2005 Depart Vladivostok, Russia Dec. 12-14, 2005 Port Call Lyttleton N.Z. Dec. 17 Arrive 60S Break channel and escort TERN and Tanker Feb. 5, 2006 Depart 60S in route to Vladivostok U.S. Coast Guard Breaker POLAR STAR The POLAR STAR will be in back-up support for icebreaking services if needed. M/V AMERICAN TERN Jan. 15-17, 2006 Port Call Lyttleton, NZ Jan. 24, 2006 Arrive Ice edge, McMurdo Sound Jan 25-Feb 1, 2006 At ice pier, McMurdo Sound Feb 2, 2006 Depart McMurdo Feb 13-15, 2006 Port Call Lyttleton, NZ T-5 Tanker, (One of five possible vessels. Specific name of vessel to be determined) Jan. 14, 2006 Arrive Ice Edge, McMurdo Sound Jan. 15-19, 2006 At Ice Pier, McMurdo. Re-fuel Station Jan. 19, 2006 Depart McMurdo R/V LAURENCE M. GOULD For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/lmg/lmgsched.pdf R/V NATHANIEL B. PALMER For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/nbp/nbpsched.pdf SECTION 2 AIR OPERATIONS Information on planned air operations (see attached sheets) SECTION 3 STATIONS a) New stations or refuges not previously notified: NONE b) Stations closed or refuges abandoned and not previously notified: NONE SECTION 4 LOGISTICS ACTIVITIES AFFECTING OTHER NATIONS a) McMurdo airstrip will be used by Italian and New Zealand C-130s and Italian Twin Otters b) McMurdo Heliport will be used by New Zealand and Italian helicopters c) Extensive air, sea and land logistic cooperative support with New Zealand d) Twin Otters to pass through Rothera (UK) upon arrival and departure from Antarctica e) Italian Twin Otter will likely pass through South Pole and McMurdo.
    [Show full text]
  • Draft ASMA Plan for Dry Valleys
    Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation.
    [Show full text]
  • Xrf Analyses of Granitoids and Associated
    X.R.F ANALYSES OF GRANITOIDS AND ASSOCIATED ROCKS FROM SOUTH VICTORIA LAND, ANTARCTICA K. Palmer Analytical Facility Victoria University of Wellington Private Bag Wellington NEW ZEALAND Contents Page 1 Introduction 1 Sample Preparation 2 Analytical Procedures 4 Acknowledgments 5 References 6 Tables of Analytical Data 11 Tables of Sample Descriptions 17 Location Maps 22 Appendix 1 23 Appendix 2 Research School of Earth Sciences Geology Board of Studies Publication No.3 Victoria University of Wellington ISSN 0113-1168 Analytical Facility Contribution No. 12 ISSN 0111-1337 Antarctic Data Series No.13 ISSN 0375-8192 1987 INTRODUCTION The granitoid rocks of South Victoria Land are represented in some of the earliest geological studies of Antarctica. Indeed as early as 1841 granitoids were dredged from the sea-floor off Victoria Land on the voyages of the Erebus and Terror. Early workers such as Ferrar and Prior described granitoids collected in situ by members of the Discovery expedition (1901-1904). Some years later further granitoid descriptions and the occasional chemical analysis were presented by such workers as David, Priestly, Mawson and Smith. In more recent times, samples collected by Gunn and Warren (1962) and analysed by the United States Geological Survey were presented in Harrington et.al. (1967). The first detailed study of granitoids in South Victoria Land was by Ghent & Henderson (1968) who, although examining only a small area in the lower Taylor Valley revealed for the first time the diverse range of granitoid types and emplacement processes in this region. This work was followed up by a relatively detailed major and trace element geochemical study, (Ghent,1970).
    [Show full text]
  • Blue Sky Airlines
    GPS Support to the National Science Foundation Office of Polar Programs 2001-2002 Season Report GPS Support to the National Science Foundation Office of Polar Programs 2001-2002 Season Report April 15, 2002 Bjorn Johns Chuck Kurnik Shad O’Neel UCAR/UNAVCO Facility University Corporation for Atmospheric Research 3340 Mitchell Lane Boulder, CO 80301 (303) 497-8034 www.unavco.ucar.edu Support funded by the National Science Foundation Office of Polar Programs Scientific Program Order No. 2 (EAR-9903413) to Cooperative Agreement No. 9732665 Cover photo: Erebus Ice Tongue Mapping – B-017 1 UNAVCO 2001-2002 Report Table of Contents: Summary........................................................................................................................................................ 3 Table 1 – 2001-2001 Antarctic Support Provided................................................................................. 4 Table 2 – 2001 Arctic Support Provided................................................................................................ 4 Science Support............................................................................................................................................. 5 Training.................................................................................................................................................... 5 Field Support........................................................................................................................................... 5 Data Processing ....................................................................................................................................
    [Show full text]
  • United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
    160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main
    [Show full text]
  • The Stratigraphy of the Ohio Range, Antarctica
    This dissertation has been 65—1200 microfilmed exactly as received LONG, William Ellis, 1930- THE STRATIGRAPHY OF THE OHIO RANGE, ANTARCTICA. The Ohio State University, Ph.D., 1964 G eology University Microfilms, Inc., Ann Arbor, Michigan THE STRATIGRAPHY OF THE OHIO RANGE, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By William Ellis Long, B.S., Rl.S. The Ohio State University 1964 Approved by A (Miser Department of Geology PLEASE NOTE: Figure pages are not original copy* ' They tend tc "curl11. Filled in the best way possible. University Microfilms, Inc. Frontispiece. The Ohio Range, Antarctica as seen from the summit of ITIt. Glossopteris. The cliffs of the northern escarpment include Schulthess Buttress and Darling Ridge. The flat area above the cliffs is the Buckeye Table. ACKNOWLEDGMENTS The preparation of this paper is aided by the supervision and advice of Dr. R. P. Goldthwait and Dr. J. M. Schopf. Dr. 5. B. Treves provided petrographic advice and Dir. G. A. Doumani provided information con­ cerning the invertebrate fossils. Invaluable assistance in the fiBld was provided by Mr. L. L. Lackey, Mr. M. D. Higgins, Mr. J. Ricker, and Mr. C. Skinner. Funds for this study were made available by the Office of Antarctic Programs of the National Science Foundation (NSF grants G-13590 and G-17216). The Ohio State Univer­ sity Research Foundation and Institute of Polar Studies administered the project (OSURF Projects 1132 and 1258). Logistic support in Antarctica was provided by the United States Navy, especially Air Development Squadron VX6.
    [Show full text]
  • 2010-2011 Science Planning Summaries
    Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.
    [Show full text]
  • Reconstructing Paleoclimate and Landscape History in Antarctica and Tibet with Cosmogenic Nuclides
    Research Collection Doctoral Thesis Reconstructing paleoclimate and landscape history in Antarctica and Tibet with cosmogenic nuclides Author(s): Oberholzer, Peter Publication Date: 2004 Permanent Link: https://doi.org/10.3929/ethz-a-004830139 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS ETH NO. 15472 RECONSTRUCTING PALEOCLIMATE AND LANDSCAPE HISTORY IN ANTARCTICA AND TIBET WITH COSMOGENIC NUCLIDES A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH For the degree of Doctor of Sciences presented by PETER OBERHOLZER dipl. Natw. ETH born 14. 08.1969 citizen of Goldingen SG and Meilen ZH accepted on the recommendation of Prof. Dr. Rainer Wieler, examiner Prof. Dr. Christian Schliichter, co-examiner Prof. Dr. Carlo Baroni, co-examiner Dr. Jörg M. Schäfer, co-examiner Prof. Dr. Philip Allen, co-examiner 11 Contents 1 Introduction 1 1.1 Climate and landscape evolution 2 1.2 Archives of the paleoclimate 2 1.3 Antarctica and Tibet - key areas of global climate 3 1.4 Surface exposure dating 3 2 Method 7 2.1 A brief history 8 2.2 Principles of surface exposure dating 8 2.3 Sampling 14 2.4 Sample preparation 17 2.5 Noble gas extraction and measurements 18 2.6 Non-cosmogenic noble gas fractions 20 3 Antarctica 27 3.1 Introduction 28 3.2 Relict ice in Beacon Valley 32 3.3 Vernier Valley moraines 42 3.4 Mount Keinath 51 3.5 Erosional surfaces in Northern Victoria Land 71 4 Tibet 91 4.1 Introduction 92 4.2 Tibet: The MIS 2 advance 98 4.3 Tibet: The MIS 3 denudation event 108 5 Europe 127 5.1 Lower Saxony 128 5.2 The landslide of Kofels 134 6 Conclusions 137 6.1 Conclusions 138 6.2 Outlook 139 iii Contents A Appendix 155 A.l Additional samples 156 A.2 Sample weights 158 A.3 Sample codes of Mt.
    [Show full text]
  • Silicon Isotopes Reveal a Non-Glacial Source of Silicon to Crescent Stream, Mcmurdo Dry Valleys, Antarctica
    Hirst, C., Opfergelt, S., Gaspard, F., Hendry, K., Hatton, J., Welch, S., Mcknight, D., & Lyons, W. B. (2020). Silicon isotopes reveal a non- glacial source of silicon to Crescent Stream, McMurdo Dry Valleys, Antarctica. Frontiers in Marine Science, 8, [229]. https://doi.org/10.3389/feart.2020.00229 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.3389/feart.2020.00229 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Frontiers Media at https://www.frontiersin.org/articles/10.3389/feart.2020.00229/full. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ feart-08-00229 June 26, 2020 Time: 15:43 # 1 ORIGINAL RESEARCH published: 26 June 2020 doi: 10.3389/feart.2020.00229 Silicon Isotopes Reveal a Non-glacial Source of Silicon to Crescent Stream, McMurdo Dry Valleys, Antarctica Catherine Hirst1*, Sophie Opfergelt1, François Gaspard1, Katharine R. Hendry2, Jade E. Hatton2, Susan Welch3, Diane M. McKnight4 and W. Berry Lyons3 1 Earth and Life Institute, Environmental Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom, 3 School of Earth Sciences, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States, 4 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States In high latitude environments, silicon is supplied to river waters by both glacial and non- glacial chemical weathering.
    [Show full text]