Advances in the Monitoring of Algal Blooms by Remote Sensing: a Bibliometric Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comparison of Global Estimates of Marine Primary Production from Ocean Color
ARTICLE IN PRESS Deep-Sea Research II 53 (2006) 741–770 www.elsevier.com/locate/dsr2 A comparison of global estimates of marine primary production from ocean color Mary-Elena Carra,Ã, Marjorie A.M. Friedrichsb,bb, Marjorie Schmeltza, Maki Noguchi Aitac, David Antoined, Kevin R. Arrigoe, Ichio Asanumaf, Olivier Aumontg, Richard Barberh, Michael Behrenfeldi, Robert Bidigarej, Erik T. Buitenhuisk, Janet Campbelll, Aurea Ciottim, Heidi Dierssenn, Mark Dowello, John Dunnep, Wayne Esaiasq, Bernard Gentilid, Watson Greggq, Steve Groomr, Nicolas Hoepffnero, Joji Ishizakas, Takahiko Kamedat, Corinne Le Que´re´k,u, Steven Lohrenzv, John Marraw, Fre´de´ric Me´lino, Keith Moorex, Andre´Moreld, Tasha E. Reddye, John Ryany, Michele Scardiz, Tim Smythr, Kevin Turpieq, Gavin Tilstoner, Kirk Watersaa, Yasuhiro Yamanakac aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91101-8099, USA bCenter for Coastal Physical Oceanography, Old Dominion University, Crittenton Hall, 768 West 52nd Street, Norfolk, VA 23529, USA cEcosystem Change Research Program, Frontier Research Center for Global Change, 3173-25,Showa-machi, Yokohama 236-0001, Japan dLaboratoire d’Oce´anographie de Villefranche, 06238, Villefranche sur Mer, France eDepartment of Geophysics, Stanford University, Stanford, CA 94305-2215, USA fTokyo University of Information Sciences 1200-1, Yato, Wakaba, Chiba 265-8501, Japan gLaboratoire d’Oce´anographie Dynamique et de Climatologie, Univ Paris 06, MNHN, IRD,CNRS, Paris F-75252 05, France hDuke University -
Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing" (2007)
University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 3-16-2007 Euphotic Zone Depth: Its Derivation and Implication to Ocean- Color Remote Sensing ZhongPing Lee Stennis Space Center Alan Weidemann Stennis Space Center John Kindle Stennis Space Center Robert Arnone Stennis Space Center Kendall L. Carder University of South Florida, [email protected] See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub Part of the Marine Biology Commons Scholar Commons Citation Lee, ZhongPing; Weidemann, Alan; Kindle, John; Arnone, Robert; Carder, Kendall L.; and Davis, Curtiss, "Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing" (2007). Marine Science Faculty Publications. 11. https://scholarcommons.usf.edu/msc_facpub/11 This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors ZhongPing Lee, Alan Weidemann, John Kindle, Robert Arnone, Kendall L. Carder, and Curtiss Davis This article is available at Scholar Commons: https://scholarcommons.usf.edu/msc_facpub/11 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C03009, doi:10.1029/2006JC003802, 2007 Euphotic zone depth: Its derivation and implication to ocean-color remote sensing ZhongPing Lee,1 Alan Weidemann,1 John Kindle,1 Robert Arnone,1 Kendall L. Carder,2 and Curtiss Davis3 Received 6 July 2006; revised 12 October 2006; accepted 1 November 2006; published 16 March 2007. [1] Euphotic zone depth, z1%, reflects the depth where photosynthetic available radiation (PAR) is 1% of its surface value. -
Chesapeake Bay Trust Hypoxia Project
Chesapeake Bay dissolved oxygen profiling using a lightweight, low- powered, real-time inductive CTDO2 mooring with sensors at multiple vertical measurement levels Doug Wilson Caribbean Wind LLC Baltimore, MD Darius Miller SoundNine Inc. Kirkland, WA Chesapeake Bay Trust EPA Chesapeake Bay Program Goal Implementation Team Support This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement CB96341401 to the Chesapeake Bay Trust. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document. SCOPE 8: “…demonstrate a reliable, cost effective, real-time dissolved oxygen vertical monitoring system for characterizing mainstem Chesapeake Bay hypoxia.” Water quality impairment in the Chesapeake Bay, caused primarily by excessive long-term nutrient input from runoff and groundwater, is characterized by extreme seasonal hypoxia, particularly in the bottom layers of the deeper mainstem (although it is often present elsewhere). In addition to obvious negative impacts on ecosystems where it occurs, hypoxia represents the integrated effect of watershed-wide nutrient pollution, and monitoring the size and location of the hypoxic regions is important to assessing Chesapeake Bay health and restoration progress. Chesapeake Bay Program direct mainstem water quality monitoring has been by necessity widely spaced in time and location, with monthly or bi-monthly single fixed stations separated by several kilometers. The need for continuous, real time, vertically sampled profiles of dissolved oxygen has been long recognized, and improvements in hypoxia modeling and sensor technology make it achievable. -
Manual for Phytoplankton Sampling and Analysis in the Black Sea
Manual for Phytoplankton Sampling and Analysis in the Black Sea Dr. Snejana Moncheva Dr. Bill Parr Institute of Oceanology, Bulgarian UNDP-GEF Black Sea Ecosystem Academy of Sciences, Recovery Project Varna, 9000, Dolmabahce Sarayi, II. Hareket P.O.Box 152 Kosku 80680 Besiktas, Bulgaria Istanbul - TURKEY Updated June 2010 2 Table of Contents 1. INTRODUCTION........................................................................................................ 5 1.1 Basic documents used............................................................................................... 1.2 Phytoplankton – definition and rationale .............................................................. 1.3 The main objectives of phytoplankton community analysis ........................... 1.4 Phytoplankton communities in the Black Sea ..................................................... 2. SAMPLING ................................................................................................................. 9 2.1 Site selection................................................................................................................. 2.2 Depth ............................................................................................................................... 2.3 Frequency and seasonality ....................................................................................... 2.4 Algal Blooms................................................................................................................. 2.4.1 Phytoplankton bloom detection -
Special Topics in Ocean Optics Protocols, Part 2
NASA/TM-2004- Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2 James L. Mueller and Giulietta S. Fargion and Charles R. McClain, Editors J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, S. J. Flora, M. E. Feinholz, N. Souaidia, C. Pietras, T. C. Stone, M. A. Yarbrough, Y. S. Kim, R. A. Barnes, Authors. National Aeronautics and Space administration Goddard Space Flight Space Center Greenbelt, Maryland 20771 February 2004 NASA/TM-2004- James L. Mueller1 and Giulietta S. Fargion2 Editors Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI, Part 2: Special Topics in Ocean Optics Protocols, Part 2 James L Mueller, CHORS, San Diego State University, San Diego, California Giulietta S. Fargion, Science Applications International Corporation, Beltsville, Maryland Charles R. McClain, NASA Goddard Space Flight Center, Greenbelt, Maryland B. Carol Johnson, Steven W. Brown, Howard Yoon, Keith Lykke, Nordine Souaidia, National Institute of Standards and Technology, Gaithersburg Maryland Dennis K. Clark, National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Camp Springs, Maryland Stephanie Flora, Michael E. Feinholz, Mark Yarbrough, Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California Yong Sung Kim, STG Inc., Rockville, Maryland Christophe Pietras, Robert A. Barnes, SAIC General Sciences Corporation, Beltsville, -
An Overview of the Seawifs Project and Strategies for Producing a Climate Research Quality Global Ocean Bio-Optical Time Series
ARTICLE IN PRESS Deep-Sea Research II 51 (2004) 5–42 An overview of the SeaWiFS project andstrategies for producing a climate research quality global ocean bio-optical time series Charles R. McClain*, Gene C. Feldman, Stanford B. Hooker Code 970.2, Office for Global Carbon Studies, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Received1 April 2003; accepted19 November 2003 Abstract The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project Office was formally initiated at the NASA Goddard Space Flight Center in 1990. Seven years later, the sensor was launched by Orbital Sciences Corporation under a data- buy contract to provide 5 years of science quality data for global ocean biogeochemistry research. To date, the SeaWiFS program has greatly exceeded the mission goals established over a decade ago in terms of data quality, data accessibility andusability, ocean community infrastructure development,cost efficiency, andcommunity service. The SeaWiFS Project Office andits collaborators in the scientific community have madesubstantial contributions in the areas of satellite calibration, product validation, near-real time data access, field data collection, protocol development, in situ instrumentation technology, operational data system development, and desktop level-0 to level-3 processing software. One important aspect of the SeaWiFS program is the high level of science community cooperation andparticipation. This article summarizes the key activities andapproaches the SeaWiFS Project Office pursuedto define,achieve, and maintain the mission objectives. These achievements have enabledthe user community to publish a large andgrowing volume of research such as those contributedto this special volume of Deep-Sea Research. Finally, some examples of major geophysical events (oceanic, atmospheric, andterrestrial) capturedby SeaWiFS are presentedto demonstratethe versatility of the sensor. -
Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data
remote sensing Article Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data Min-Sun Lee 1,2, Kyung-Ae Park 2,3,* and Fiorenza Micheli 1,4,5 1 Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; [email protected] (M.-S.L.); [email protected] (F.M.) 2 Department of Earth Science Education, Seoul National University, Seoul 08826, Korea 3 Research Institute of Oceanography, Seoul National University, Seoul 08826, Korea 4 Department of Biology, Stanford University, Stanford, CA 94305, USA 5 Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA 93950, USA * Correspondence: [email protected]; Tel.: +82-2-880-7780 Abstract: Red tide causes significant damage to marine resources such as aquaculture and fisheries in coastal regions. Such red tide events occur globally, across latitudes and ocean ecoregions. Satellite observations can be an effective tool for tracking and investigating red tides and have great potential for informing strategies to minimize their impacts on coastal fisheries. However, previous satellite- based red tide detection algorithms have been mostly conducted over short time scales and within relatively small areas, and have shown significant differences from actual field data, highlighting a need for new, more accurate algorithms to be developed. In this study, we present the newly developed normalized red tide index (NRTI). The NRTI uses Geostationary Ocean Color Imager (GOCI) data to detect red tides by observing in situ spectral characteristics of red tides and sea water using spectroradiometer in the coastal region of Korean Peninsula during severe red tide events. The bimodality of peaks in spectral reflectance with respect to wavelengths has become the basis for developing NRTI, by multiplying the heights of both spectral peaks. -
Pollution Biomarkers in the Framework of Marine Biodiversity Conservation: State of Art and Perspectives
water Review Pollution Biomarkers in the Framework of Marine Biodiversity Conservation: State of Art and Perspectives Maria Giulia Lionetto * , Roberto Caricato and Maria Elena Giordano Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; [email protected] (R.C.); [email protected] (M.E.G.) * Correspondence: [email protected] Abstract: Marine biodiversity is threatened by several anthropogenic pressures. Pollution deriving from the discharge of chemical contaminants in the sea represents one of the main threats to the marine environment, influencing the health of organisms, their ability to recover their homeostatic status, and in turn endangering biodiversity. Molecular and cellular responses to chemical pollutants, known as biomarkers, are effect-based methodologies useful for detecting exposure and for assessing the effects of pollutants on biota in environmental monitoring. The present review analyzes and discusses the recent literature on the use of biomarkers in the framework of biodiversity conservation. The study shows that pollution biomarkers can be useful tools for monitoring and assessment of pollution threat to marine biodiversity, both in the environmental quality monitoring of protected areas and the assessment of the health status of species at risk. Moreover, key areas of the research that need further development are suggested, such as the development of omics-based biomarkers specifically addressed to conservation purposes and their validation in the field, the extension of the biomarker study to a wider number of endangered species, and the development of organic Citation: Lionetto, M.G.; Caricato, R.; guidelines for the application of the biomarker approach in support to conservation policies and Giordano, M.E. -
4 Study Design for Monitoring Wetlands United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002
United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002 Methods for evaluating wetland condition #4 Study Design for Monitoring Wetlands United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002 Methods for evaluating wetland condition #4 Study Design for Monitoring Wetlands Principal Contributor Warnell School of Forest Resources, University of Georgia Amanda K. Parker Prepared jointly by: The U.S. Environmental Protection Agency Health and Ecological Criteria Division (Office of Science and Technology) and Wetlands Division (Office of Wetlands, Oceans, and Watersheds) United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002 Notice The material in this document has been subjected to U.S. Environmental Protection Agency (EPA) technical review and has been approved for publication as an EPA document. The information contained herein is offered to the reader as a review of the “state of the science” concerning wetland bioassessment and nutrient enrichment and is not intended to be prescriptive guidance or firm advice. Mention of trade names, products or services does not convey, and should not be interpreted as conveying official EPA approval, endorsement, or recommendation. Appropriate Citation U.S. EPA. 2002. Methods for Evaluating Wetland Condition: Study Design for Monitoring Wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-015. This entire document can be downloaded from the following U.S. EPA websites: http://www.epa.gov/ost/standards http://www.epa.gov/owow/wetlands/bawwg ii Contents Foreword .................................................................................................................. -
Remote Sensing of Euphotic Depth in Lake Naivasha
REMOTE SENSING OF EUPHOTIC DEPTH IN LAKE NAIVASHA NOBUHLE PATIENCE MAJOZI February, 2011 SUPERVISORS: Dr. Ir. Mhd, S, Salama Prof. Dr. Ing., W, Verhoef REMOTE SENSING OF EUPHOTIC DEPTH IN LAKE NAIVASHA NOBUHLE PATIENCE MAJOZI Enschede, The Netherlands, February, 2011 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Water Resources and Environmental Management SUPERVISORS: Dr. Ir. Mhd, S., Salama Prof. Dr. Ing., W., Verhoef THESIS ASSESSMENT BOARD: Dr. Ir., C.M.M., Mannaerts (Chair) Dr, D.M., Harper (External Examiner, Department of Biology - University of Leicester – UK) DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. ABSTRACT Euphotic zone depth is a fundamental measurement of water clarity in water bodies. It is determined by the water constituents like suspended particulate matter, dissolved organic matter, phytoplankton, mineral particles and water molecules, which attenuate solar radiation as it transits down a water column. Primary production is at its maximum within the euphotic zone because there is sufficient Photosynthetically Active Radiation (PAR) for photosynthesis to take place. The study was conducted in Lake Naivasha, Kenya. Rich in biodiversity, it supports a thriving fishery, an intensive flower-growing industry and geothermal power generation, thereby contributing significantly to local and national economic development. -
Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status
Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Roberto Danovaro, Laura Carugati, Berzano Marco, Abigail E. Cahill, Susana de Carvalho Spinola, Anne Chenuil, Cinzia Corinaldesi, Cristina Sonia, Romain David, Antonio Dell’Anno, et al. To cite this version: Roberto Danovaro, Laura Carugati, Berzano Marco, Abigail E. Cahill, Susana de Carvalho Spinola, et al.. Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status.. Frontiers in Marine Science, Frontiers Media, 2016, 3, pp.213. 10.3389/fmars.2016.00213. hal-01448726 HAL Id: hal-01448726 https://hal.archives-ouvertes.fr/hal-01448726 Submitted on 28 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Proof Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools (Adobe Help). Do not forget to reply to the queries. We do not accept corrections in the form of edited manuscripts. In order to ensure the timely publication of your article, please submit the corrections within 48 hours. If you have any questions, please contact science.production.offi[email protected]. Author Queries Form Q1 We have ignored the below author comment in line no. -
Satellite Remote Sensing: Ocean Color☆ P Jeremy Werdell and Charles R Mcclain, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Satellite Remote Sensing: Ocean Color☆ P Jeremy Werdell and Charles R McClain, NASA Goddard Space Flight Center, Greenbelt, MD, United States © 2019 Elsevier Ltd. All rights reserved. Introduction 444 Ocean Color Theoretical and Observational Basis 444 Satellite Ocean Color Methodology 446 Sensor Design and Performance 447 Postlaunch Sensor Calibration Stability 449 Atmospheric Correction 449 Bio-optical Algorithms 450 Product Validation 450 Satellite Ocean Color Example Applications 451 Conclusions and Future Directions 454 References 454 Nomenclature Symbol Description (Units) À a Absorption coefficient (m 1) À1 aCDOM Absorption coefficient for colored dissolved organic matter (m ) À1 aNAP Absorption coefficient for nonalgal particles (m ) À1 aph Absorption coefficient for phytoplankton (m ) À1 aw Absorption coefficient for seawater (m ) À1 bb Backscattering coefficient (m ) À1 bb,NAP Backscattering coefficient for nonalgal particles (m ) À1 bb,ph Backscattering coefficient for phytoplankton (m ) À1 bb,w Backscattering coefficient for seawater (m ) À [Chla] Concentration of chlorophyll-a (mg m 3) À2 À1 Ed Downwelling irradiance (mWcm nm ) À2 À1 Eu Upwelling irradiance (mWcm nm ) f Factor that relates R to a and bb (unitless) À2 À1 F0 Solar irradiance (mWcm nm ) À1 Kd Diffuse attenuation coefficient of downwelling irradiance (m ) À1 KLu Diffuse attenuation coefficient of upwelling radiance (m ) À2 À1 À1 La Aerosol radiance (mWcm nm sr ) À2 À1 À1 Lf Foam (white cap) radiance (mWcm nm sr ) À2 À1 À1) Lg Sun glint radiance (mWcm nm sr À2