Redalyc.Trophic State Index Estimation from Remote Sensing Of

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Trophic State Index Estimation from Remote Sensing Of Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Membrillo-Abad, Alejandra-Selene; Torres-Vera, Marco-Antonio; Alcocer, Javier; Prol- Ledesma, Rosa Ma.; Oseguera, Luis A.; Ruiz-Armenta, Juan Ramón Trophic State Index estimation from remote sensing of lake Chapala, México Revista Mexicana de Ciencias Geológicas, vol. 33, núm. 2, 2016, pp. 183-191 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57246489003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Trophic State Index estimation from remote sensingv. of 33, lake núm. Chapala, 2, 2016, p. México 183-191 Trophic State Index estimation from remote sensing of lake Chapala, México Alejandra-Selene Membrillo-Abad1,*, Marco-Antonio Torres-Vera2, Javier Alcocer3, Rosa Ma. Prol-Ledesma4, Luis A. Oseguera3, and Juan Ramón Ruiz-Armenta4 1 Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico. 2 Asociación para Evitar la Ceguera en México, Vicente García Torres 46, San Lucas Coyoacán, C.P. 04030, Ciudad de México, Mexico. 3 Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, Mexico. 4 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico. * [email protected] ABSTRACT áreas urbanas, agricultura y ganadera. Mediante técnicas de percepción remota se estimó el Índice de Estado Trófico (IET) del lago, como un The Trophic State Index (TSI) was estimated for Lake Chapala índice de calidad de agua. Los parámetros de clorofila_a y Profundidad by remote sensing techniques as an indicator of water quality. Our de disco de Secchi (que están relacionados con el estado trófico), fueron results show that multispectral satellite images can be successfully monitoreados mediante el uso de imágenes satelitales multiespectrales, used to monitor surface water parameters related to trophic state con base en el aumento en los valores de turbidez y concentración de (i.e., chlorophyll-a and Secchi disc depth). Lake Chapala is the largest clorofila_a, los cuales están relacionados con las propiedades ópticas del water body in Mexico and supplies Guadalajara City with over 60% agua. Se estimó la concentración de clorofila_a y turbidez (parámetro of its freshwater requirements. The Lerma River is the main tributary inverso a la profundidad de Disco de Secchi) para el Lago de Chapala a of Lake Chapala and exhibits significant water quality deterioration partir de relaciones empíricas entre reflectancia en la banda SPOT B2 associated with nutrient enrichment coming from drainage from urban, y la profundidad de disco de Secchi así como la relación de las bandas agriculture and livestock areas. This study is based on the modification SPOT S3/S2 y la concentración de clorofila_a. Los resultados de la of the optical properties of the water caused by increased values of determinación del Índice de Estado Trófico basada en la reflectancia turbidity and Chl-a. We estimated turbidity on the basis of empirical de las imágenes multiespectrales muestran un lago eutrófico. El uso relationships between reflectance data in band SPOT S2 and Secchi de datos multiespectrales permite el monitoreo del Índice de Estado disc depth, and Chl-a concentration values from the relationship Trófico de forma continua, de bajo costo y eficiente para el apoyo en la between band ratio SPOT S3/S2 and Chl-a concentration in the water implementación de regulaciones que permitan el mejoramiento de la samples. The results show that application of defoliants to eradicate calidad del agua en el Lago de Chapala. aquatic weeds did not ameliorate the trophic state of the lake. The Trophic State Index determinations are based on multispectral image Palabras clave: Índice de Estado Trófico; SPOT; clorofila_a; calidad de agua. reflectance values, which revealed Chapala to be in the range from oligotrophic to mesotrophic. The use of remote sensing data allows a more efficient, continuous and low-cost Trophic State Index monitoring INTRODUCTION of Lake Chapala to assist in the implementation of regulations toward water quality improvement. Remote sensing has been successfully used over the last 40 years to estimate water quality worldwide (Dekker and Peters, 1993; Baban, Key words: Water quality; SPOT; Trophic State Index; Chlorophyll 1993; Cheng and Lei, 2001;Tyler et al., 2006; Chang et al., 2014;). reflectance. Multispectral image processing applications are based on the modifi- cation of the water optical properties associated with turbidity related to the presence of suspended particles as well as Chl-a enrichment RESUMEN (Jensen, 2000; Ritchie et al., 2003). Monitoring water quality in a large lake by direct sampling is costly and does not cover the entire area at El Lago de Chapala (México), muestra un deterioro en su calidad de agua, the same time. In contrast, remote sensing provides continuous spa- asociado con el enriquecimiento de nutrientes derivados de drenajes de tial coverage of multispectral data over the complete geographic area Membrillo-Abad, A.S., Torres-Vera, M.A., Alcocer, J., Prol-Ledesma, R.M., Oseguera, L.A., Ruiz-Armenta, J.R., 2016, Trophic State Index estimation from remote sensing of lake Chapala, México: Revista Mexicana de Ciencias Geológicas, v. 33, núm. 2, p. 183-191. RMCG | v. 33 | núm. 2 | www.rmcg.unam.mx 183 Membrillo-Abad et al. of the water body. This areal determination of relevant parameters 1997). Since 2005, diverse eutrophication control programs have been generates synoptic and significant information on water quality to implemented with unclear results. There is an urgent need to develop facilitate decision-making for basin management and proper regula- low-cost evaluation strategies that can be easily executed to monitor tion of the water entering the lakes from the tributaries (Brezonik et the trophic state of Lake Chapala. al., 2005; Fuller and Minnerick, 2007; Pavelsky and Smith, 2009; Usali In this study, we propose to prove the effectiveness of applying and Ismail, 2010). remote sensing techniques as a fast, low-cost, and accurate method to The main pollutants from agricultural activities including nitrogen estimate Lake Chapala’s trophic state. Image processing includes mosaic and phosphorous are nutrients that promote primary productivity and construction, spatial enhancement, reflectance calculation and band cause eutrophication in the long term. Eutrophic lakes exhibit poor ratio. Calculation of turbidity and Chl-a concentrations for all pixels water quality unsuitable for freshwater supply, human health, fisheries within the lake was done by linear regression of satellite multi-spectral and recreation (Hammer and Mackichan, 1981); therefore, it is neces- image data with field truth measurements. sary to perform a continuous evaluation of the trophic state of a lake that is used as a water supplier. The scale used to define eutrophication has been adapted to diverse STUDY AREA local conditions. Table 1 shows the trophic state denominations based on values of chlorophyl-a concentration (Chl-a) and Secchi disk depth Lake Chapala is located in the western part of central Mexico (SDD) as suggested by Harper (1992). Carlson (1977) proposed the (20°06’36’’–20°18’00’’ North, 102°42’00’’–103°25’30’’ West, 1520 m calculation of an index to give a numerical scale to evaluate the trophic above sea level) in the Lerma-Chapala Basin (Figure 1), which drains state of a water body (Carlson's Trophic State Index – CTSI) by meas- an area of 53,591 km2. Lake Chapala has an area of about 1100 km2. Its uring tubidity and Chl-a concentration. CTSI is calculated based on larger axis has an East-West orientation with a maximun length of 77 empirical relationships between SDD, Chl-a and TP. These empirical km, and its smaller axis has a length of 22 km. The average depth varies relationships are local properties defined for environments similar to between 4–7 m. (Trujillo-Cardenas et al., 2010). The annual inflow of Carlson's study area; therefore, CTSI should be modified according Lake Chapala is 1162 Mm3yr-1 (precipitation: Mm3yr-1; inflow of water- to the specific local environmental parameters (Cheng and Lei, 2001; shed: 178 Mm3yr-1 and river’s input 273 Mm3yr-1). The annual output Sheela et al., 2011a). In this study, we performed a model callibration is 1666 Mm3yr-1 (evaporation: 1394 Mm3yr-1; pumping and Santiago to calculate the local Chapala parameters to be used in the CTSI. River: 272 Mm3yr-1). Therefore, the Lake Chapala is overexploited Lake Chapala supplies freshwater to Guadalajara, which is the sec- (Aparicio, 2001). Its main tributary is the Lerma River with a longitude ond most populated city in Mexico. However, diverse human activities of 705 km. Two large cities, Guadalajara and Mexico City, have a strong in the drainage basin (urban development, agriculture and industry) influence on the basin hydrology due to their intense economic activi- have deteriorated the water quality. The increasing freshwater demand ties and large freshwater requirements (Cotler et al., 2006). from Guadalajara has raised awareness of freshwater protection; there- Lake Chapala lost part of its original surface area in 1905 when fore, the Mexican government has implemented a monitoring program the shallow littoral area of the eastern section of the lake (“Ciénega to preserve, restore, protect, and sustainably use the water resources de Chapala”) was converted into agricultural land. The lake shrank in the Lerma−Chapala Basin (SEMARNAT, 2005). As a result, the 500 km2 and lost 856 × 106 m3 of water (Sandoval, 1994).
Recommended publications
  • Chesapeake Bay Trust Hypoxia Project
    Chesapeake Bay dissolved oxygen profiling using a lightweight, low- powered, real-time inductive CTDO2 mooring with sensors at multiple vertical measurement levels Doug Wilson Caribbean Wind LLC Baltimore, MD Darius Miller SoundNine Inc. Kirkland, WA Chesapeake Bay Trust EPA Chesapeake Bay Program Goal Implementation Team Support This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement CB96341401 to the Chesapeake Bay Trust. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document. SCOPE 8: “…demonstrate a reliable, cost effective, real-time dissolved oxygen vertical monitoring system for characterizing mainstem Chesapeake Bay hypoxia.” Water quality impairment in the Chesapeake Bay, caused primarily by excessive long-term nutrient input from runoff and groundwater, is characterized by extreme seasonal hypoxia, particularly in the bottom layers of the deeper mainstem (although it is often present elsewhere). In addition to obvious negative impacts on ecosystems where it occurs, hypoxia represents the integrated effect of watershed-wide nutrient pollution, and monitoring the size and location of the hypoxic regions is important to assessing Chesapeake Bay health and restoration progress. Chesapeake Bay Program direct mainstem water quality monitoring has been by necessity widely spaced in time and location, with monthly or bi-monthly single fixed stations separated by several kilometers. The need for continuous, real time, vertically sampled profiles of dissolved oxygen has been long recognized, and improvements in hypoxia modeling and sensor technology make it achievable.
    [Show full text]
  • Manual for Phytoplankton Sampling and Analysis in the Black Sea
    Manual for Phytoplankton Sampling and Analysis in the Black Sea Dr. Snejana Moncheva Dr. Bill Parr Institute of Oceanology, Bulgarian UNDP-GEF Black Sea Ecosystem Academy of Sciences, Recovery Project Varna, 9000, Dolmabahce Sarayi, II. Hareket P.O.Box 152 Kosku 80680 Besiktas, Bulgaria Istanbul - TURKEY Updated June 2010 2 Table of Contents 1. INTRODUCTION........................................................................................................ 5 1.1 Basic documents used............................................................................................... 1.2 Phytoplankton – definition and rationale .............................................................. 1.3 The main objectives of phytoplankton community analysis ........................... 1.4 Phytoplankton communities in the Black Sea ..................................................... 2. SAMPLING ................................................................................................................. 9 2.1 Site selection................................................................................................................. 2.2 Depth ............................................................................................................................... 2.3 Frequency and seasonality ....................................................................................... 2.4 Algal Blooms................................................................................................................. 2.4.1 Phytoplankton bloom detection
    [Show full text]
  • Advances in the Monitoring of Algal Blooms by Remote Sensing: a Bibliometric Analysis
    applied sciences Article Advances in the Monitoring of Algal Blooms by Remote Sensing: A Bibliometric Analysis Maria-Teresa Sebastiá-Frasquet 1,* , Jesús-A Aguilar-Maldonado 1 , Iván Herrero-Durá 2 , Eduardo Santamaría-del-Ángel 3 , Sergio Morell-Monzó 1 and Javier Estornell 4 1 Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paraninfo, 1, 46730 Grau de Gandia, Spain; [email protected] (J.-A.A.-M.); [email protected] (S.M.-M.) 2 KFB Acoustics Sp. z o. o. Mydlana 7, 51-502 Wrocław, Poland; [email protected] 3 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; [email protected] 4 Geo-Environmental Cartography and Remote Sensing Group, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] Received: 20 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Since remote sensing of ocean colour began in 1978, several ocean-colour sensors have been launched to measure ocean properties. These measures have been applied to study water quality, and they specifically can be used to study algal blooms. Blooms are a natural phenomenon that, due to anthropogenic activities, appear to have increased in frequency, intensity, and geographic distribution. This paper aims to provide a systematic analysis of research on remote sensing of algal blooms during 1999–2019 via bibliometric technique. This study aims to reveal the limitations of current studies to analyse climatic variability effect. A total of 1292 peer-reviewed articles published between January 1999 and December 2019 were collected.
    [Show full text]
  • Pollution Biomarkers in the Framework of Marine Biodiversity Conservation: State of Art and Perspectives
    water Review Pollution Biomarkers in the Framework of Marine Biodiversity Conservation: State of Art and Perspectives Maria Giulia Lionetto * , Roberto Caricato and Maria Elena Giordano Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; [email protected] (R.C.); [email protected] (M.E.G.) * Correspondence: [email protected] Abstract: Marine biodiversity is threatened by several anthropogenic pressures. Pollution deriving from the discharge of chemical contaminants in the sea represents one of the main threats to the marine environment, influencing the health of organisms, their ability to recover their homeostatic status, and in turn endangering biodiversity. Molecular and cellular responses to chemical pollutants, known as biomarkers, are effect-based methodologies useful for detecting exposure and for assessing the effects of pollutants on biota in environmental monitoring. The present review analyzes and discusses the recent literature on the use of biomarkers in the framework of biodiversity conservation. The study shows that pollution biomarkers can be useful tools for monitoring and assessment of pollution threat to marine biodiversity, both in the environmental quality monitoring of protected areas and the assessment of the health status of species at risk. Moreover, key areas of the research that need further development are suggested, such as the development of omics-based biomarkers specifically addressed to conservation purposes and their validation in the field, the extension of the biomarker study to a wider number of endangered species, and the development of organic Citation: Lionetto, M.G.; Caricato, R.; guidelines for the application of the biomarker approach in support to conservation policies and Giordano, M.E.
    [Show full text]
  • 4 Study Design for Monitoring Wetlands United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002
    United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002 Methods for evaluating wetland condition #4 Study Design for Monitoring Wetlands United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002 Methods for evaluating wetland condition #4 Study Design for Monitoring Wetlands Principal Contributor Warnell School of Forest Resources, University of Georgia Amanda K. Parker Prepared jointly by: The U.S. Environmental Protection Agency Health and Ecological Criteria Division (Office of Science and Technology) and Wetlands Division (Office of Wetlands, Oceans, and Watersheds) United States Environmental Office of Water EPA 822-R-02-015 Protection Agency Washington, DC 20460 March 2002 Notice The material in this document has been subjected to U.S. Environmental Protection Agency (EPA) technical review and has been approved for publication as an EPA document. The information contained herein is offered to the reader as a review of the “state of the science” concerning wetland bioassessment and nutrient enrichment and is not intended to be prescriptive guidance or firm advice. Mention of trade names, products or services does not convey, and should not be interpreted as conveying official EPA approval, endorsement, or recommendation. Appropriate Citation U.S. EPA. 2002. Methods for Evaluating Wetland Condition: Study Design for Monitoring Wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-015. This entire document can be downloaded from the following U.S. EPA websites: http://www.epa.gov/ost/standards http://www.epa.gov/owow/wetlands/bawwg ii Contents Foreword ..................................................................................................................
    [Show full text]
  • Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status
    Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Roberto Danovaro, Laura Carugati, Berzano Marco, Abigail E. Cahill, Susana de Carvalho Spinola, Anne Chenuil, Cinzia Corinaldesi, Cristina Sonia, Romain David, Antonio Dell’Anno, et al. To cite this version: Roberto Danovaro, Laura Carugati, Berzano Marco, Abigail E. Cahill, Susana de Carvalho Spinola, et al.. Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status.. Frontiers in Marine Science, Frontiers Media, 2016, 3, pp.213. 10.3389/fmars.2016.00213. hal-01448726 HAL Id: hal-01448726 https://hal.archives-ouvertes.fr/hal-01448726 Submitted on 28 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Proof Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools (Adobe Help). Do not forget to reply to the queries. We do not accept corrections in the form of edited manuscripts. In order to ensure the timely publication of your article, please submit the corrections within 48 hours. If you have any questions, please contact science.production.offi[email protected]. Author Queries Form Q1 We have ignored the below author comment in line no.
    [Show full text]
  • A Comparative Study of Four Indexes Based on Zooplankton As Trophic State Indicators in Reservoirs
    Limnetica, 38(1): 291-302 (2019). DOI: 10.23818/limn.38.06 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs Daniel Montagud1,*, Juan M. Soria1, Xavier Soria-Perpiñà2, Teresa Alfonso1 and Eduardo Vicente1 1 Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBIBE). University of Valencia, 46980-Pater- na, Spain. 2 Image Processing Laboratory. University of Valencia, 46980-Paterna, Spain. * Corresponding author: [email protected] Received: 15/02/18 Accepted: 25/06/18 ABSTRACT A comparative study of four indices based on zooplankton as trophic state indicators in reservoirs This study aims to examine four recently conducted trophic state indices that are based on the density of zooplankton and designed for estimating the trophic state of inland waters. These indices include two with formulations based on quotients or ratios, the Rcla and the Rzoo-chla, which were proposed and validated in the European project ECOFRAME (Moss et al., 2003), and two with formulations based on the incorporation of a statistical tool comprising canonical correspondences analysis (CCA), the Wetland Zooplankton Index proposed in 2002 by researchers from McMaster University of Ontario (Lougheed & Chow-Fraser, 2002) and the Zooplankton Reservoir Trophic Index, an index recently designed by the Ebro Basin Authority and on which this manuscript is the first article. These indices were studied and applied in 53 heterogeneous reservoirs of the Ebro Basin. In addition, all were subsequently validated by Carlson’s Trophic State Index based on the amount of chlorophyll a (Carlson, 1977), with significant differences found between them.
    [Show full text]
  • Trophic State Index Estimation from Remote Sensing of Lake Chapala, México
    REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Trophic State Index estimation from remote sensingv. of 33, lake núm. Chapala, 2, 2016, p. México 183-191 Trophic State Index estimation from remote sensing of lake Chapala, México Alejandra-Selene Membrillo-Abad1,*, Marco-Antonio Torres-Vera2, Javier Alcocer3, Rosa Ma. Prol-Ledesma4, Luis A. Oseguera3, and Juan Ramón Ruiz-Armenta4 1 Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico. 2 Asociación para Evitar la Ceguera en México, Vicente García Torres 46, San Lucas Coyoacán, C.P. 04030, Ciudad de México, Mexico. 3 Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, Mexico. 4 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Ciudad de México, Mexico. * [email protected] ABSTRACT áreas urbanas, agricultura y ganadera. Mediante técnicas de percepción remota se estimó el Índice de Estado Trófico (IET) del lago, como un The Trophic State Index (TSI) was estimated for Lake Chapala índice de calidad de agua. Los parámetros de clorofila_a y Profundidad by remote sensing techniques as an indicator of water quality. Our de disco de Secchi (que están relacionados con el estado trófico), fueron results show that multispectral satellite images can be successfully monitoreados mediante el uso de imágenes satelitales multiespectrales, used to monitor surface water parameters related to trophic state con base en el aumento en los valores de turbidez y concentración de (i.e., chlorophyll-a and Secchi disc depth).
    [Show full text]
  • Environmental Monitoring and Assessment Program-Surface Waters
    Environmental Monitoring and Assessment Program- Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Non-wadeable Rivers And Streams Edited by James M. Lazorchak1, Brian H. Hill1, Daniel K. Averill2, David V. Peck3, and Donald J. Klemm1 1U.S. Environmental Protection Agency Ecosystems Research Branch Ecological Exposure Research Division National Exposure Research Laboratory Cincinnati, OH 45268 2Dynamac International Corp. 200 SW 35th St. Corvallis, OR 97333 3U.S. Environmental Protection Agency Regional Ecology Branch Western Ecology Division National Health and Environmental Effects Research Laboratory Corvallis, OR 97333 i Notice This research described in this report has been funded wholly or in part by the U.S. Environmental Protection Agency. This document has been prepared at the EPA National Exposure Research Labora- tory (Ecological Exposure Research Division, Cincinnati, Ohio) and the National Health and Environmental Effects Research Laboratory (Western Ecology Division, Corvallis, Oregon), under the following contracts and cooperative agreements: Contract 68-C6-0006 to Dynamac International, Inc. Contract 68-W5-0065 to OAO, Inc. Cooperative Agreement CR824682 to Oregon State University This work is in support of the Environmental Monitoring and As- sessment Program (EMAP). Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The correct citation for this document is: Lazorchak, J.M., Hill, B.H., Averill, D.K., D.V. Peck, and D.J. Klemm (editors). 2000. Environmental Monitoring and As- sessment Program -Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Non-Wade- able Rivers and Streams U.S. Environmental Protection Agency, Cincinnati OH. ii Section authors are listed below.
    [Show full text]
  • Management and Monitoring of Air and Water Pollution by Using GIS Technology
    J. Viet. Env. 2012, Vol. 3, No. 1, pp. 50-54 Management and monitoring of air and water pollution by using GIS technology Quản lý giám sát ô nhiễm môi trường không khí và nước bằng cách sử dụng công nghệ GIS Research a rticle Ngo, Thanh Binh1 * ; Nguyen, Tuan Anh2 ; Vu, Ngoc Quy1 ; Chu, Thi Thu Ha3 ; Cao, Minh Quy2 1Faculty of Electrical and Electronic Engineering, University of Transport and Communications (UTC), Lang Thuong, Dong Da, Hanoi, Vietnam; 2Institute of Environmental Science and Transportation, UTC, Lang Thuong, Dong Da, Hanoi, Vietnam; 3Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam The need for a green clean living environment is increasing today, with the boom of the socio- economic development, educational level. However, the environmental pollution becomes an alerted global issue due to the large amount of wastes discharged making this need to be not easily met at the moment. Greenhouse gas emission mainly from energy, transport and agricultural land use is causing climate change because of their long atmospheric lifetime and trapping the heat in the atmosphere. Harmful effects and damages caused by environment pollution and climate change are unpredictable. It was reported that every year millions of people die because of fine particles when exposing to air pollution and other millions die from water-born diseases. Management and monitoring of air and water pollution by using GIS technology is an effective method. The measured data can be obtained continuously, quickly and accurately at stations in any regions even with complex terrain.
    [Show full text]
  • Phytoplankton and Environmental Monitoring in the Sea Waters of the United Arab Emirates
    PHYTOPLANKTON AND ENVIRONMENTAL MONITORING IN THE SEA WATERS OF THE UNITED ARAB EMIRATES Strategic Goal: Sustainability of Ecosystems Thematic Area: Phytoplankton/Red Tide Management Program Geographic Scope: Exclusive Economic Zone (EEZ) of the United Arab Emirates in the Arabian Gulf and Sea of Oman Timeline: 2011 – On Going Purpose: Regular and systematic phytoplankton monitoring in the UAE coastal waters and providing quick response to Red Tide/HABs and fish mortality issues Project Lead: Ministry of Climate Change and Environment (MOCCAE) Project Brief The marine coastal environment is of great importance to the United Arab Emirates (UAE) as most of its cities are located on the coastal areas. The UAE faced a major threat of red tide during 2009 – 2008; that caused death of fish, affected fishing and tourism industries, and forced desalination plants to cease operation. Studies during this period indicated that the UAE coastal waters are inhabited by several algal species capable of blooming and producing toxin . Lack of policies and expertise within the UAE government for managing red tide outbreaks led to spread the red tide during Figure 1.1 that period. Satellite images showing temperature and chlorophyll Moreover, there was no effective communication and coordination within the distribution indicating biological activity on 30 march 2015. concerned government agencies in the UAE and other regional organizations. Images by: Regional Organization for the Protection) Consequently, the Ministry of Climate Change and Environment (MOCCaE) (of the Marine Environment established a Red Tide Monitoring and Management Program in 2011. Activities and Outcome • Field visits and sample collections based on first-hand information about fish death Figure 2.1 Figure 2.2 or marine water discolorations or satellite images from the Regional Organization for Protection of the Marine Environment ( ROPME).
    [Show full text]
  • The Maine Phytoplankton Monitoring Program, Esperanza Stancioff
    The Maine Phytoplankton Monitoring Program Esperanza Stancioff Biographical Sketch Esperanza has provided leadership in the organizational and technical development of coastal water quality, phytoplankton and marine habitat programs for citizen groups and schools statewide. She developed a statewide model for citizen groups and schools, the Maine Clean Water/Partners in Monitoring Program, to assess and remediate local coastal pollution problems. She received a B.S. in Marine Biology from Evergreen State College and a Masters in Environmental Education from the University of Maine. Abstract Maine has a long history of coastal monitoring for shellfish resources in protection of public health, both in water quality (since 1950) and for toxic algae (since 1958). The agency responsible for this monitoring is the Maine Department of Marine Resources (DMR). In 1989, DMR recognized that monitoring 5,000 miles of coastline during a state budget crisis and with limited resources would not be possible. At the same time, the Clean Water Program of the University of Maine Cooperative Extension (UMCE) was implementing a community-based water quality monitoring effort statewide. The two organizations, along with the Maine State Planning Office, and the Maine Department of Environmental Protection formed the Partners in Monitoring to support volunteers in collection of credible data. Following the success of nine seasons of volunteer water quality monitoring, in 1996 DMR and UMCE formed an alliance with the US Food and Drug Administration and the Bigelow Laboratory for Ocean Sciences to conduct a phytoplankton monitoring program. The target organisms for the program are Alexandrium spp., Dinophysis spp., Prorocentrum sp., or Pseudonitzschia spp.
    [Show full text]