Status and Plans for Satellite Ocean-Colour Missions: Considerations for Complementary Missions

Total Page:16

File Type:pdf, Size:1020Kb

Status and Plans for Satellite Ocean-Colour Missions: Considerations for Complementary Missions Reports of the International Ocean-Colour Coordinating Group An Affiliated Program of the Scientific Committee on Oceanic Research (SCOR) Supporting the Committee on Earth Observing Satellites (CEOS) IOCCG Report Number 2, 1999 Status and plans for Satellite Ocean-Colour Missions: Considerations for Complementary Missions. Report of an IOCCG working group held in Halifax, Nova Scotia, Canada, June 16-18, 1998, chaired by Mr. Tasuku Tanaka (NASDA). Edited by James A. Yoder (URI); Based on contributions from: Watson W. Gregg, Nicolas Hoepffner, John Parslow, Trevor Platt, Michael Rast, Shubha Sathyendranath, Tasuku Tanaka and James A. Yoder. Please cite this report as IOCCG (1999), with the complete bibliographic citation as follows: IOCCG (1999). Status and Plans for Satellite Ocean-Colour Missions: Considerations for Complementary Missions. Yoder, J. A. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 2, IOCCG, Dartmouth, Canada. ISSN: 1098-6030 The International Ocean-Colour Coordinating Group (IOCCG) is an international group of experts in the field of satellite ocean colour, which acts as a liaison and communication channel between users, managers and agencies in the ocean-colour arena. The IOCCG is sponsored by NASA (National Aeronautics and Space Administration), NASDA (National Space Development Agency of Japan), ESA (European Space Agency), CNES (Centre National d’Etudes Spatiales), JRC (Joint Research Centre, EC), Canadian Space Agency (CSA), and SCOR (Scientific Committee on Oceanic Research). http://www.ioccg.org Published by the International Ocean-Colour Coordinating Group, PO Box 1006, Dartmouth, Nova Scotia, Canada, B2Y 4A2 Printed by MacNab Print, Dartmouth, Canada © IOCCG 1999 Contents Executive Summary ................................................................................................................ 1 1. Introduction ..................................................................................................................5 2. Utility of Ocean-Colour Data ........................................................................................ 7 2.1 Ocean Carbon Flux ............................................................................................... 7 2.2 Ocean Biology and Upper Ocean Processes ........................................................... 8 2.3 Scientific Analysis and Management of the Coastal Zone ...................................... 8 3. Technical Requirements for Satellite Ocean-Colour Sensors .......................................... 11 3.1 Technical Requirements for Open-Ocean, Global Missions ................................... 12 3.2 Technical Requirements for Coastal Applications .................................................. 14 3.3 Technical Requirements for New and Emerging Applications of Ocean-Colour Data ........................................................................................... 17 3.4 New Technologies in Ocean Colour ...................................................................... 22 3.5 Meeting the Requirements ..................................................................................... 23 4. Assessment of Existing and Planned Sensors up to Approximately the Year 2005........... 25 4.1 Assessment of Sensors for Minimum Requirements ............................................... 25 4.2 Global Coverage .................................................................................................... 25 4.3 Latitudinal Coverage.............................................................................................. 26 4.4 Temporal Coverage ................................................................................................ 28 5. Data Merging and Validation......................................................................................... 30 5.1 Data Merging and Integration ............................................................................... 30 5.2 Validation .............................................................................................................. 32 5.3 Integration ............................................................................................................. 33 6. Steps Towards Developing a Strategy to Coordinate Ocean-Colour Measurements from Space in the Post-2005 Timeframe ................................................. 34 6.1 Introduction .......................................................................................................... 34 6.2 Tentative Plans for Future (Post-2005) Ocean-Colour Sensors .............................. 35 6.3 Strategy for the Post-2005 Timeframe.................................................................... 36 References .............................................................................................................................. 39 List of Acronyms and Abbreviations ....................................................................................... 42 Executive Summary • 1 Executive Summary This report explains the utility of ocean- understand how it is controlled and why it colour data, summarizes technical require- varies from year to year. This is the province ments for global-scale, operational and of the marine programmes of the IGBP, and scientific remote sensing of ocean colour in ocean-colour remote sensing plays an both Case 1 (open-ocean) and Case 2 invaluable role in these programmes. It is (coastal) waters and addresses the issues of used as the basis of a method to compute complementarity that arise whenever more ocean primary production, and also to than one sensor with similar capabilities is provide the chlorophyll fields that can be in orbit at the same time. The objective is to used to initiate and verify coupled, numerical provide space agencies with the information models of the ocean and its embedded necessary for them to begin developing an ecosystem. Looking to the future, it will be internationally-coordinated plan for the used in earth-observing programmes such as uninterrupted delivery of ocean-colour data GOOS to detect changes in the structure into the indefinite future. and function of the ocean ecosystem that follow from the ensemble of forces that we The Utility of Ocean-Colour Data refer to collectively as climate change. We recognize here three broad scientific A second application of ocean-colour applications of ocean-colour data. The first data is to provide a synoptic, observational concerns the ocean carbon cycle, and the role link between the development of the ocean of the ocean in climate change. It is therefore ecosystem and the physics of the mixed layer. of profound significance in the response of Because phytoplankton control the optical governments and agencies to the Kyoto turbidity in most parts of the ocean, they Protocol. A primary goal of ocean-colour control the manner in which the mixed layer remote sensing is to produce synoptic fields heats up under the influence of the sun. of chlorophyll pigment, an index of Physical models of the mixed layer include phytoplankton biomass. It is the single most a balance between the onset of stratification important property of the marine ecosystem through heating and the erosion of that we would like to measure at synoptic stratification through turbulence. Optical scales. Phytoplankton consume carbon turbidity is a key property in these models, dioxide in their basic nutrition (photo- and it can be delivered synoptically from synthesis). On a global scale, marine phyto- ocean-colour remote sensing. Mixed-layer plankton consume fifty thousand million models seek to predict sea-surface temper- tonnes of carbon every year in a process ature, critical for weather forecasting in referred to as primary production. maritime areas, especially in the tropics. Thus, ocean-colour data will be important One of the aims of climate research in in IGOS programmes such as GODAE, and the ocean is to quantify this carbon flux, to will be important more widely in earth- 62 • Status and Plans for Satellite Ocean-Colour Missions observing programmes such as GOOS. v Local-scale data are collected with a resolution of 1 km or better. They are The third application of ocean-colour especially useful for coastal or Case 2 data that we mention here is the general area waters, and are of particular interest to of coastal zone management, including programmes such as GLOBEC, LOICZ fisheries management. One of the central and HAB. questions in fisheries science today is the extent to which fluctuations in the biomass The requirements of typical applications of exploited stocks can be accounted for by at these two principal scales are different, and fluctuations in the ecosystem consequent they will be treated sequentially in this upon variations in the large-scale circulation. report. It is a question that can be addressed only with the aid of a time series of synoptic views Principal Mission Types of the ocean ecosystem as supplied by ocean- colour remote sensing. One of the tragedies Another way to classify ocean-colour of modern biological oceanography is that, initiatives is according to the mission type. at a time when major fish stocks were failing The most fundamental differences are around the world, there was no stream of between operational missions that support ocean-colour data available that could have government programmes (such as the been utilized in discussion of these matters. meteorological satellites supporting weather- Beyond fisheries issues, ocean-colour data
Recommended publications
  • A Comparison of Global Estimates of Marine Primary Production from Ocean Color
    ARTICLE IN PRESS Deep-Sea Research II 53 (2006) 741–770 www.elsevier.com/locate/dsr2 A comparison of global estimates of marine primary production from ocean color Mary-Elena Carra,Ã, Marjorie A.M. Friedrichsb,bb, Marjorie Schmeltza, Maki Noguchi Aitac, David Antoined, Kevin R. Arrigoe, Ichio Asanumaf, Olivier Aumontg, Richard Barberh, Michael Behrenfeldi, Robert Bidigarej, Erik T. Buitenhuisk, Janet Campbelll, Aurea Ciottim, Heidi Dierssenn, Mark Dowello, John Dunnep, Wayne Esaiasq, Bernard Gentilid, Watson Greggq, Steve Groomr, Nicolas Hoepffnero, Joji Ishizakas, Takahiko Kamedat, Corinne Le Que´re´k,u, Steven Lohrenzv, John Marraw, Fre´de´ric Me´lino, Keith Moorex, Andre´Moreld, Tasha E. Reddye, John Ryany, Michele Scardiz, Tim Smythr, Kevin Turpieq, Gavin Tilstoner, Kirk Watersaa, Yasuhiro Yamanakac aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91101-8099, USA bCenter for Coastal Physical Oceanography, Old Dominion University, Crittenton Hall, 768 West 52nd Street, Norfolk, VA 23529, USA cEcosystem Change Research Program, Frontier Research Center for Global Change, 3173-25,Showa-machi, Yokohama 236-0001, Japan dLaboratoire d’Oce´anographie de Villefranche, 06238, Villefranche sur Mer, France eDepartment of Geophysics, Stanford University, Stanford, CA 94305-2215, USA fTokyo University of Information Sciences 1200-1, Yato, Wakaba, Chiba 265-8501, Japan gLaboratoire d’Oce´anographie Dynamique et de Climatologie, Univ Paris 06, MNHN, IRD,CNRS, Paris F-75252 05, France hDuke University
    [Show full text]
  • Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing" (2007)
    University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 3-16-2007 Euphotic Zone Depth: Its Derivation and Implication to Ocean- Color Remote Sensing ZhongPing Lee Stennis Space Center Alan Weidemann Stennis Space Center John Kindle Stennis Space Center Robert Arnone Stennis Space Center Kendall L. Carder University of South Florida, [email protected] See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub Part of the Marine Biology Commons Scholar Commons Citation Lee, ZhongPing; Weidemann, Alan; Kindle, John; Arnone, Robert; Carder, Kendall L.; and Davis, Curtiss, "Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing" (2007). Marine Science Faculty Publications. 11. https://scholarcommons.usf.edu/msc_facpub/11 This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors ZhongPing Lee, Alan Weidemann, John Kindle, Robert Arnone, Kendall L. Carder, and Curtiss Davis This article is available at Scholar Commons: https://scholarcommons.usf.edu/msc_facpub/11 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C03009, doi:10.1029/2006JC003802, 2007 Euphotic zone depth: Its derivation and implication to ocean-color remote sensing ZhongPing Lee,1 Alan Weidemann,1 John Kindle,1 Robert Arnone,1 Kendall L. Carder,2 and Curtiss Davis3 Received 6 July 2006; revised 12 October 2006; accepted 1 November 2006; published 16 March 2007. [1] Euphotic zone depth, z1%, reflects the depth where photosynthetic available radiation (PAR) is 1% of its surface value.
    [Show full text]
  • Special Topics in Ocean Optics Protocols, Part 2
    NASA/TM-2004- Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2 James L. Mueller and Giulietta S. Fargion and Charles R. McClain, Editors J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, S. J. Flora, M. E. Feinholz, N. Souaidia, C. Pietras, T. C. Stone, M. A. Yarbrough, Y. S. Kim, R. A. Barnes, Authors. National Aeronautics and Space administration Goddard Space Flight Space Center Greenbelt, Maryland 20771 February 2004 NASA/TM-2004- James L. Mueller1 and Giulietta S. Fargion2 Editors Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI, Part 2: Special Topics in Ocean Optics Protocols, Part 2 James L Mueller, CHORS, San Diego State University, San Diego, California Giulietta S. Fargion, Science Applications International Corporation, Beltsville, Maryland Charles R. McClain, NASA Goddard Space Flight Center, Greenbelt, Maryland B. Carol Johnson, Steven W. Brown, Howard Yoon, Keith Lykke, Nordine Souaidia, National Institute of Standards and Technology, Gaithersburg Maryland Dennis K. Clark, National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Camp Springs, Maryland Stephanie Flora, Michael E. Feinholz, Mark Yarbrough, Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California Yong Sung Kim, STG Inc., Rockville, Maryland Christophe Pietras, Robert A. Barnes, SAIC General Sciences Corporation, Beltsville,
    [Show full text]
  • Advances in the Monitoring of Algal Blooms by Remote Sensing: a Bibliometric Analysis
    applied sciences Article Advances in the Monitoring of Algal Blooms by Remote Sensing: A Bibliometric Analysis Maria-Teresa Sebastiá-Frasquet 1,* , Jesús-A Aguilar-Maldonado 1 , Iván Herrero-Durá 2 , Eduardo Santamaría-del-Ángel 3 , Sergio Morell-Monzó 1 and Javier Estornell 4 1 Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paraninfo, 1, 46730 Grau de Gandia, Spain; [email protected] (J.-A.A.-M.); [email protected] (S.M.-M.) 2 KFB Acoustics Sp. z o. o. Mydlana 7, 51-502 Wrocław, Poland; [email protected] 3 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; [email protected] 4 Geo-Environmental Cartography and Remote Sensing Group, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] Received: 20 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Since remote sensing of ocean colour began in 1978, several ocean-colour sensors have been launched to measure ocean properties. These measures have been applied to study water quality, and they specifically can be used to study algal blooms. Blooms are a natural phenomenon that, due to anthropogenic activities, appear to have increased in frequency, intensity, and geographic distribution. This paper aims to provide a systematic analysis of research on remote sensing of algal blooms during 1999–2019 via bibliometric technique. This study aims to reveal the limitations of current studies to analyse climatic variability effect. A total of 1292 peer-reviewed articles published between January 1999 and December 2019 were collected.
    [Show full text]
  • An Overview of the Seawifs Project and Strategies for Producing a Climate Research Quality Global Ocean Bio-Optical Time Series
    ARTICLE IN PRESS Deep-Sea Research II 51 (2004) 5–42 An overview of the SeaWiFS project andstrategies for producing a climate research quality global ocean bio-optical time series Charles R. McClain*, Gene C. Feldman, Stanford B. Hooker Code 970.2, Office for Global Carbon Studies, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Received1 April 2003; accepted19 November 2003 Abstract The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project Office was formally initiated at the NASA Goddard Space Flight Center in 1990. Seven years later, the sensor was launched by Orbital Sciences Corporation under a data- buy contract to provide 5 years of science quality data for global ocean biogeochemistry research. To date, the SeaWiFS program has greatly exceeded the mission goals established over a decade ago in terms of data quality, data accessibility andusability, ocean community infrastructure development,cost efficiency, andcommunity service. The SeaWiFS Project Office andits collaborators in the scientific community have madesubstantial contributions in the areas of satellite calibration, product validation, near-real time data access, field data collection, protocol development, in situ instrumentation technology, operational data system development, and desktop level-0 to level-3 processing software. One important aspect of the SeaWiFS program is the high level of science community cooperation andparticipation. This article summarizes the key activities andapproaches the SeaWiFS Project Office pursuedto define,achieve, and maintain the mission objectives. These achievements have enabledthe user community to publish a large andgrowing volume of research such as those contributedto this special volume of Deep-Sea Research. Finally, some examples of major geophysical events (oceanic, atmospheric, andterrestrial) capturedby SeaWiFS are presentedto demonstratethe versatility of the sensor.
    [Show full text]
  • Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data
    remote sensing Article Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data Min-Sun Lee 1,2, Kyung-Ae Park 2,3,* and Fiorenza Micheli 1,4,5 1 Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; [email protected] (M.-S.L.); [email protected] (F.M.) 2 Department of Earth Science Education, Seoul National University, Seoul 08826, Korea 3 Research Institute of Oceanography, Seoul National University, Seoul 08826, Korea 4 Department of Biology, Stanford University, Stanford, CA 94305, USA 5 Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA 93950, USA * Correspondence: [email protected]; Tel.: +82-2-880-7780 Abstract: Red tide causes significant damage to marine resources such as aquaculture and fisheries in coastal regions. Such red tide events occur globally, across latitudes and ocean ecoregions. Satellite observations can be an effective tool for tracking and investigating red tides and have great potential for informing strategies to minimize their impacts on coastal fisheries. However, previous satellite- based red tide detection algorithms have been mostly conducted over short time scales and within relatively small areas, and have shown significant differences from actual field data, highlighting a need for new, more accurate algorithms to be developed. In this study, we present the newly developed normalized red tide index (NRTI). The NRTI uses Geostationary Ocean Color Imager (GOCI) data to detect red tides by observing in situ spectral characteristics of red tides and sea water using spectroradiometer in the coastal region of Korean Peninsula during severe red tide events. The bimodality of peaks in spectral reflectance with respect to wavelengths has become the basis for developing NRTI, by multiplying the heights of both spectral peaks.
    [Show full text]
  • Icesat) Spacecraft Immediately Following Its Initial Mechanical Integration on June 18Th, 2002
    Goddard Space Flight Center Greenbelt, Maryland 20771 FS-2002-9-047-GSFC The Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and land Elevation Satellite (ICESat) spacecraft immediately following its initial mechanical integration on June 18th, 2002. Note that ICESat’s solar arrays have not yet been attached. Left – Gordon Casto, NASA/GSFC. Right – John Bishop, Mantech. Courtesy of Ball Aerospace & Technologies Corp. “Possible changes in the mass balance of the Antarctic and Greenland ice sheets are fundamental gaps in our understanding and are crucial to the quantification and refinement of sea-level forecasts.” —Sea-Level Change report, National Research Council (1990) “In light of…abrupt ice-sheet changes affecting global climate and sea level, enhanced emphasis on ice-sheet characterization over time is essential.” —Abrupt Climate Change report, National Research Council (2002) MISSION INTRODUCTION AND SCIENTIFIC RATIONALE Ice, Cloud and land Elevation Satellite (ICESat) Are the ice sheets that still blanket the Earth’s poles growing or shrinking? Will global sea level rise or fall? NASA’s Earth Science Enterprise (ESE) has developed the ICESat mission to provide answers to these and other questions — to help fulfill NASA’s mission to understand and protect our home planet. The primary goal of ICESat is to quantify ice sheet mass balance and understand how changes in the Earth's atmosphere and climate affect the polar ice masses and global sea level. ICESat will also measure global distributions of clouds and aerosols for studies of their effects on atmospheric processes and global change, as well as land topography, sea ice, and vegetation cover.
    [Show full text]
  • Quality Control of Modis Data on Behalf of the European Space Agency A
    QUALITY CONTROL OF MODIS DATA ON BEHALF OF THE EUROPEAN SPACE AGENCY A. Borg1, S. Lavender1, J. Jackson1, C. Kent1, D. Sautreau1, G. Ottavianelli2 1: ARGANS Ltd, Plymouth, United Kingdom, 2: ESA ESRIN, Frascati, Italy INTRODUCTION The European Space Agency (ESA) acquires and distributes MODIS data as a Third Party Mission (TPM). Data is acquired over Europe and used to populate the MERCI MODIS and GMES MyOcean Catalogues, available to Users in Near Real Time (NRT). The GMES MyOcean dataset also contains SeaWiFS data collected up to the mission end in December 2010. Plans to reprocess ESA archives of SeaWiFS data using the most recently available NASA code and calibration configurations (available via SeaDAS 6.2) are imminent, as well as research activities aimed to increase awareness of ESA acquired MODIS and SeaWiFS data products. ARGANS Ltd is a UK based company, Plymouth and Harwell Oxford, run by Earth Observation expert Samantha Lavender. It has close links to ESA and works collaboratively on a number of projects, such as the VEGA Space Ltd lead IDEAS SPPA service which supports the Quality Control (QC) and handling of MODIS and SeaWiFS data. IDEAS SPPA QUALITY CONTROL GMES is the European Programme for the establishment of a European capacity for Earth MODIS SPPA activities carried out at Observation. It consists of data collected from multiple ARGANS include the daily QC of products sources (earth observation satellites and in situ through download and processing using the sensors). SeaDAS processor. Assessment of products Policymakers and public authorities, the major users of is fed back to ESA and the GMES GMES, can use the information to prepare Coordinated Quality Control (CQC).
    [Show full text]
  • Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing
    remote sensing Article Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing Christopher O. Ilori 1,*, Nima Pahlevan 2,3 and Anders Knudby 4 1 Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada 2 NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA; [email protected] 3 Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600 Lanham, MD 20706, USA 4 University of Ottawa, 60 University Private, Ottawa, ON K1N 6N5, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-778-929-5350 Received: 28 January 2019; Accepted: 18 February 2019; Published: 25 February 2019 Abstract: Ocean colour (OC) remote sensing is important for monitoring marine ecosystems. However, inverting the OC signal from the top-of-atmosphere (TOA) radiance measured by satellite sensors remains a challenge as the retrieval accuracy is highly dependent on the performance of the atmospheric correction as well as sensor calibration. In this study, the performances of four atmospheric correction (AC) algorithms, the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI), Atmospheric Correction for OLI ‘lite’ (ACOLITE), Landsat 8 Surface Reflectance (LSR) Climate Data Record (Landsat CDR), herein referred to as LaSRC (Landsat 8 Surface Reflectance Code), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), implemented for Landsat 8 Operational Land Imager (OLI) data, were evaluated. The OLI-derived remote sensing reflectance (Rrs) products (also known as Level-2 products) were tested against near-simultaneous in-situ data acquired from the OC component of the Aerosol Robotic Network (AERONET-OC).
    [Show full text]
  • Remote Sensing of Euphotic Depth in Lake Naivasha
    REMOTE SENSING OF EUPHOTIC DEPTH IN LAKE NAIVASHA NOBUHLE PATIENCE MAJOZI February, 2011 SUPERVISORS: Dr. Ir. Mhd, S, Salama Prof. Dr. Ing., W, Verhoef REMOTE SENSING OF EUPHOTIC DEPTH IN LAKE NAIVASHA NOBUHLE PATIENCE MAJOZI Enschede, The Netherlands, February, 2011 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Water Resources and Environmental Management SUPERVISORS: Dr. Ir. Mhd, S., Salama Prof. Dr. Ing., W., Verhoef THESIS ASSESSMENT BOARD: Dr. Ir., C.M.M., Mannaerts (Chair) Dr, D.M., Harper (External Examiner, Department of Biology - University of Leicester – UK) DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. ABSTRACT Euphotic zone depth is a fundamental measurement of water clarity in water bodies. It is determined by the water constituents like suspended particulate matter, dissolved organic matter, phytoplankton, mineral particles and water molecules, which attenuate solar radiation as it transits down a water column. Primary production is at its maximum within the euphotic zone because there is sufficient Photosynthetically Active Radiation (PAR) for photosynthesis to take place. The study was conducted in Lake Naivasha, Kenya. Rich in biodiversity, it supports a thriving fishery, an intensive flower-growing industry and geothermal power generation, thereby contributing significantly to local and national economic development.
    [Show full text]
  • The Future of Remote Sensing
    The Future of Remote Sensing YI CHAO 1993-2011: Jet Propulsion Laboratory 2012-present: Remote Sensing Solutions, Inc. October 7, 2013 1 California Institute of Technology ------OUTLINE------ • Current state-of-the-art • Future challenges and mission concepts • Remote sensing data integrated with in situ data and assimilative/forecasting models 2 Emerging Field of Satellite Oceanography TOPEX (1992) Seasat (1978) Courtesy: D. Menemenlis Golden Era of Satellite Oceanography SeaStar TRMM NSCAT QuikSCAT TOPEX Terra Jason Seasat SeaWinds All the satellite missions that were either dedicated to or Aqua partly capable of ocean GRACE Courtesy: D. Menemenlis ICESat OSTM Aquarius remote sensing. 1st Weather (Meteorological) Satellite (1960) 5 1st Oceanographic Satellite (1978) Satellite’s view of the Gulf Stream 1770 Benjamin Franklin (postmaster) collected information about ships sailing between New England and England, discovering and mapping the Gulf Stream 6 Sea Surface Temperature as measured by thermal infrared sensor via multi-channel • Atmosphere absorbs and emits radiation (wavelength dependent, use multi- channel) • Reflection of solar radiation (avoid solar radiation band) • ~0.5oC accuracy 7 MODIS Terra & Aqua Satellites Infrared cannot penetrate cloud MetOp Satellites by EUMETSAT (VIIRS 8 on NPP) Geostationary Satellites 36,000 km 9 TRMM Microwave Imager (TMI) & AMSR-E (cloud-free, but coarse resolution Δ ~ Hλ/D ~ 25-km) 10 Microwave Radiometer on the Aquarius satellite: The first NASA satellite to measure salinity L-Band Vertical
    [Show full text]
  • An Overview of Available Satellite Data and Services
    Awareness Event 28 September 2018 | ADB, Manila, Philippines An overview of available satellite data and services EO4SD consortium, presented by Rolf A. de By (ITC, University of Twente) The consortium of EO4SD – Agriculture and Rural Development The Netherlands Denmark Service provision Austria Data integration Belgium Communication Capacity development Remote sensing … is the science of acquiring information about the Earth's surface without actually being in contact with it. A: Source of energy D G B: Interaction with A atmosphere C: Interaction with earth surface B D: Recording energy B E E: Transmission, F reception, processing F: Analysis C G: Application slide 3 28 September 2018 Ready for take-off • To get there, first steps are: ▪ identify observation requirements ▪ build sensor & design satellites ▪ get rocket to send each satellite into a (pre-defined) orbit slide 4 28 September 2018 Space: a busy place Infographics from https://spaceoneers.io Infographics from https://spaceoneers.io Status on 31-7-2017 Infographics from https://spaceoneers.io ~215 European 12% Copernicus programme • The world's largest single earth observation programme, directed by the European Commission in partnership with the European Space Agency (ESA). • Headed by the European Commission (EC) ▪ Acting on behalf of the European Union, setting requirements, managing the services • in partnership with the European Space Agency (ESA) ▪ Provision of 30 satellites (Sentinels) for the operational needs, space segment & ground segment. • Objectives: ▪ Global, continuous, autonomous, high quality, wide-range EO capacity. ▪ Providing accurate, timely and easily accessible information for, a.o. improving the management of the environment, understanding and mitigating the effects of climate change, and ensure civil security.
    [Show full text]