John W. Taylor & Mary L. Berbee. 2006

Total Page:16

File Type:pdf, Size:1020Kb

John W. Taylor & Mary L. Berbee. 2006 Mycologia, 98(6), 2006, pp. 838–849. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Dating divergences in the Fungal Tree of Life: review and new analyses John W. Taylor1 continuous records of fossil fungi, or their spores, Department of Plant and Microbial Biology, 111 that show recognizable shifts in morphology. Koshland Hall, University of California, Berkeley, Key words: dating divergences, fossil fungi, California 94720-3102 molecular phylogeny Mary L. Berbee Department of Botany, University of British Columbia, INTRODUCTION AND REVIEW Vancouver, British Columbia, V6T 1Z4 Canada Evolutionischangeovertimeandtimeisthe common currency that lets evolutionary biologists Abstract: The collection of papers in this issue of compare historical events in their group with events Mycologia documents considerable improvements in in other groups. Dating evolutionary events began taxon sampling and phylogenetic resolution regard- with evaluation of the geologic record and fossils, but ing the Fungal Tree of Life. The new data will when genetic variation could be conveniently de- stimulate new attempts to date divergences and tected, initially by protein electrophoresis, it also was correlate events in fungal evolution with those of employed to date evolutionary events (Zuckerkandl other organisms. Here, we review the history of dating and Pauling 1965, Sarich and Wilson 1967). Access to fungal divergences by nucleic acid variation and then nucleic acid sequence made the genetic contribution use a dataset of 50 genes for 25 selected fungi, plants only stronger and now it is with a combination of and animals to investigate divergence times in paleontology and molecular evolution that biologists kingdom Fungi. In particular, we test the choice of attempt to date divergences in the Tree of Life from fossil calibration points on dating divergences in near the present to the period of the last common fungi. At the scale of our analysis, substitution rates ancestor of life. Estimates of dates for events that varied without showing significant within-lineage occurred as many or more than 1 000 000 000 y ago correlation, so we used the Langley-Fitch method in cannot be exact and it is not surprising that there are the R8S package of computer programs to estimate competing estimates that differ greatly in time. Here node ages. Different calibration points had a dramatic we review the history of dating fungal divergences and effect on estimated divergence dates. The estimate for possible reasons for discrepancies in the process in the age of the Ascomycota/Basidiomycota split was the hope that recent advances in methods of 1 808 000 000 y ago when calibrated assuming that estimating divergences from molecular data and mammals and birds diverged 300 000 000 y ago, critical evaluation of fossils might help resolve this 1 489 000 000 y ago when calibrated assuming that controversy. After this review we examine substitution the 400 000 000 y old fungal fossil Paleopyreno- rate heterogeneity and the effect of fossil calibration on dating fungal divergences with sequence for 50 mycites devonicus represents Sordariomycetes and genes sampled from available genome sequences of ,400 000 000 y ago when calibrated assuming animals, plants and a broad sampling of fungi. 206 000 000 y ago for the plant eudicot/monocot Mycologists were quick to use nucleic acid sequence divergence. An advantage of a date of ,400 000 000 y variation to date important events in the history of ago for the Ascomycota/Basidiomycota divergence is fungal evolution and to use those dates to compare that the radiation of fungi associated with land plants events in fungal evolution to those of plants and would not greatly precede the earliest land plant animals. Fungi are good subjects for such studies fossils. Acceptance of ,400 000 000 y ago for the because they are for the most part haploid, have Ascomycota /Basidiomycota split would require that relatively few multigene families and many taxa are P. devonicus be considered a deeply branching large enough, particularly compared to other mi- Ascomycota. To improve on current estimates of crobes, to leave useful fossils, most often associated divergence times, mycologists will require calibration with plants (Taylor et al 2005). The field was points from within groups of fungi that share similar inaugurated by Simon et al (1993), who asked if the substitution rates. The most useful calibration is likely radiation of arbuscular mycorrhizal fungi coincided to depend on the discovery and description of with the appearance of green plants on land. Their analysis of 12 Glomeromycota small subunit riboso- Accepted for publication 25 September 2006. mal DNA (SSU rDNA) sequences, using parsimony 1 Corresponding author. E-mail: [email protected] analysis and calibration points of 200 000 000 y ago 838 TAYLOR AND BERBEE:DATING FUNGAL DIVERGENCES 839 for the origin of monocots and 1 000 000 000 y ago study (Doolittle et al 1996). This calibration increased for the divergence of fungi and plants, dated the the gap between molecular and fossil estimates of radiation of Glomeromycota at 462 000 000– divergences. However, as noted by the authors, this 353 000 000 y ago. These dates were compared to analysis failed to adequately account for the afore- fossils of arbuscular mycorrhizae in the rhizomes of mentioned Paleopyrenomycites fossil as a sordariomy- plants in the Rhynie chert (Pirozynski and Dalpe cete from 400 000 000 y ago (Berbee and Taylor 1989, Remy et al 1994) to support the hypothesis that 2001). Heckman et al (2001) took the most innovative mycorrhizal mutualisms of plants and arbuscular step in molecular analysis in 2001 when they revisited mycorrhizal fungi conquered land together. the evolution of land plants and associated arbuscular Also in 1993, Berbee and Taylor fit a broad mycorrhizae by expanding the nucleic acid database phylogenetic analysis of fungi to the geologic time- to include multiple protein coding genes and scale. They also used SSU rDNA sequences and estimating divergence times either by averaging the analysis by parsimony and neighbor joining, the latter dates estimated by the different protein genes or by with maximum likelihood distances, to determine concatenating them before averaging. The topology a phylogeny for fungi. They sorted fungi into nine estimated by the proteins was not in conflict with that lineages and showed, via relative rate tests, that the estimated from SSU rDNA, but the divergence times lineages had different rates of nucleotide substitu- were much older, further increasing the gap between tion. A mean rate was calculated and the rates on each divergences estimated from nucleic acid variation and lineage were normalized to make a tree with one those estimated from fossils. For example the global rate of nucleotide substitution (1.0% per radiation of Glomeromycota (ca. 1 200 000 000 y 100 000 000, for SSU rDNA). This tree was fit to the ago) now would predate the appearance of arbuscular geologic timescale using fungal fossils, fossils of mycorrhizal fossils (400 000 000 y ago) by ca. organisms associated with fungi (beetle galleries) or 800 000 000 y; however the new molecular diver- radiations of organisms mutualistic with fungi (rumi- gence dates accommodated the 400 000 000 y old nates). From these calibrations, the divergence of Paleopyrenomycites fossil. The key reason that the fungi and animals was estimated to have occurred at divergence times of Heckman et al were much older is 600 000 000 y ago. that a previous study by the same research group, The publications of 1993 have been influential, using the same multiprotein approach and fossil judging from their citations (Simon et al [1993] at evidence for the divergence of mammals and birds, 224 and Berbee and Taylor [1993] at 200), and these estimated the divergence of animals and fungi at ca. numbers show that dating evolutionary events has 1 576 000 000 y ago (Wang et al 1999). become an integral part of fungal phylogenetic studies, nowhere more important than with symbioses Fossils define minimum ages of divergence.—Some of whether they involve mycorrhizae, insects or humans. the gap between molecular and fossil dates certainly In addition to the application of molecular analyses, can be attributed to the fact that fossils usually new fossil finds have been reported; especially provide only a minimum age for divergences. There noteworthy were two fossils, one identified as Glo- are several well understood reasons for this observa- meromycota from 460 000 000 y ago (Redecker et al tion, which have been explored in depth for plants 2000) and another identified as a perithecial ascomy- (Magallon 2004). Simply put, all divergences begin cete and classified as a pyrenomycete (Sordariomy- when an ancestral species splits to form progeny cetes) that was found in the stem and rhizomes of the species; as a result, until morphological differences fossil plant Asteroxylon mackie from 400 000 000 y ago characteristic of the descendent groups develop, (Taylor et al 1999), which later was described as fossils of the different clades will not be recognizable Paleopyrenomycites devonicus (Taylor et al 2005) as such. In addition neither fossilization nor fossil (FIG. 1). discovery favor preservation and recovery of the In terms of molecular analyses, it was not until 2001 earliest fossils for any lineage. The problem is that the field shifted direction as much as in 1993, by compounded when the organisms of interest are which time phylogenetic methods employing likeli- microbes, but the problems remain even for charis- hood had been developed that could enforce matic macrofauna. For example there is controversy a constant molecular clock. Berbee and Taylor even about the vertebrate fossils that document the (2001) revisited fitting the fungal SSU rDNA tree to divergence of birds and mammals, which provide the geologic time with maximum likelihood analysis and geologic calibration for the 1 576 000 000 y old calibrating dates on this tree using an earlier date for estimate of animal-fungal divergence (Wang et al the divergence of animals and fungi, 965 000 000 y 1999).
Recommended publications
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
    Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista)
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • V.Woolleythesisfinalversion Corrections VWJWSR
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/129924 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Elucidating the natural function of cordycepin, a secondary metabolite of the fungus Cordyceps militaris, and its potential as a novel biopesticide in Integrated Pest Management By Victoria Clare Woolley A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Life Sciences University of Warwick, School of Life Sciences September 2018 Table of Contents List of Figures ......................................................................................................... 1 List of Tables ........................................................................................................... 3 Abbreviations .......................................................................................................... 4 Acknowledgements .................................................................................................. 6 Declarations ............................................................................................................ 7 Abstract ..................................................................................................................
    [Show full text]
  • Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity
    Journal of Fungi Article Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity Daniel Peterson 1, Tang Li 2, Ana M. Calvo 1,* and Yanbin Yin 2,* 1 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 2 Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA; [email protected] * Correspondence: [email protected] (A.M.C.); [email protected] (Y.Y.); Tel.: +1-(815)-753-0451 (A.M.C.); +1-(402)-472-4303 (Y.Y.) Abstract: Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest Citation: Peterson, D.; Li, T.; Calvo, occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are A.M.; Yin, Y. Categorization of Orthologous Gene Clusters in 92 also identified to have higher significance and occurrence in group-specific orthogroups.
    [Show full text]
  • Reference Guide to the Classification of Fungi and Fungal-Like Protists, with Emphasis on the Fungal Genera with Medical Importance (Circa 2009)
    Reference Guide to the Classification of Fungi and Fungal-like Protists, with Emphasis on the Fungal Genera with Medical Importance (circa 2009) This outline lists some common genera of fungi and fungal-like protists, which are classified into a number of phyla, subphyla, classes, subclasses and in most cases orders and families. The classification is patterned after the broad schemes of Hawksworth et al. (1), Kirk et al. (2), Eriksson et al. (3), Alexopoulos et al. (4), and Blackwell et al (5) and was devised by PJS to reflect his perception of the relationships of the various organisms traditionally studied by mycologists and included in textbooks and manuals dealing with mycology. The classification ranks below class reflect interpretations of Alexopoulos et al. (7), and PJS. It should be noted that different biologists until recently have had varying opinions on which organisms to include in the Kingdom Fungi and on what rank should be accorded each major group. This classification outline distributes the fungi and fungal-like organisms often dealt with in traditional mycology among the three kingdoms, Protozoa, Chromista and Fungi. With only a relatively few exceptions, the genera listed are very common or are of medical importance. However, not all genera of the Kingdom Fungi involved in human and animal medical mycology are listed. Kingdom: Protozoa/Amebozoa/Eumycetozoa (collection of numerous phyla of eukaryotic, generally wall- less, unicellular, plasmodial, or colonial phagotrophic microorganisms, which includes at least four fungal-like phyla that are no longer considered to be part of the Kingdom Fungi). These have all been reclassified and renamed to reflect their nonfungal nature (see for example Reading Sz 5, which discusses the reclassification of Rhinosporidium seeberi into the additional new Phylum Mezomycetozoea).
    [Show full text]
  • Microplastics Accumulate Fungal Pathogens in Terrestrial Ecosystems
    www.nature.com/scientificreports OPEN Microplastics accumulate fungal pathogens in terrestrial ecosystems Gerasimos Gkoutselis1,5, Stephan Rohrbach2,5, Janno Harjes1, Martin Obst3, Andreas Brachmann4, Marcus A. Horn2* & Gerhard Rambold1* Microplastic (MP) is a pervasive pollutant in nature that is colonised by diverse groups of microbes, including potentially pathogenic species. Fungi have been largely neglected in this context, despite their afnity for plastics and their impact as pathogens. To unravel the role of MP as a carrier of fungal pathogens in terrestrial ecosystems and the immediate human environment, epiplastic mycobiomes from municipal plastic waste from Kenya were deciphered using ITS metabarcoding as well as a comprehensive meta-analysis, and visualised via scanning electron as well as confocal laser scanning microscopy. Metagenomic and microscopic fndings provided complementary evidence that the terrestrial plastisphere is a suitable ecological niche for a variety of fungal organisms, including important animal and plant pathogens, which formed the plastisphere core mycobiome. We show that MPs serve as selective artifcial microhabitats that not only attract distinct fungal communities, but also accumulate certain opportunistic human pathogens, such as cryptococcal and Phoma-like species. Therefore, MP must be regarded a persistent reservoir and potential vector for fungal pathogens in soil environments. Given the increasing amount of plastic waste in terrestrial ecosystems worldwide, this interrelation may have severe consequences for the trans-kingdom and multi-organismal epidemiology of fungal infections on a global scale. Plastic waste, an inevitable and inadvertent marker of the Anthropocene, has become a ubiquitous pollutant in nature1. Plastics can therefore exert negative efects on biota in both, aquatic and terrestrial ecosystems.
    [Show full text]
  • 2 Pezizomycotina: Pezizomycetes, Orbiliomycetes
    2 Pezizomycotina: Pezizomycetes, Orbiliomycetes 1 DONALD H. PFISTER CONTENTS 5. Discinaceae . 47 6. Glaziellaceae. 47 I. Introduction ................................ 35 7. Helvellaceae . 47 II. Orbiliomycetes: An Overview.............. 37 8. Karstenellaceae. 47 III. Occurrence and Distribution .............. 37 9. Morchellaceae . 47 A. Species Trapping Nematodes 10. Pezizaceae . 48 and Other Invertebrates................. 38 11. Pyronemataceae. 48 B. Saprobic Species . ................. 38 12. Rhizinaceae . 49 IV. Morphological Features .................... 38 13. Sarcoscyphaceae . 49 A. Ascomata . ........................... 38 14. Sarcosomataceae. 49 B. Asci. ..................................... 39 15. Tuberaceae . 49 C. Ascospores . ........................... 39 XIII. Growth in Culture .......................... 50 D. Paraphyses. ........................... 39 XIV. Conclusion .................................. 50 E. Septal Structures . ................. 40 References. ............................. 50 F. Nuclear Division . ................. 40 G. Anamorphic States . ................. 40 V. Reproduction ............................... 41 VI. History of Classification and Current I. Introduction Hypotheses.................................. 41 VII. Growth in Culture .......................... 41 VIII. Pezizomycetes: An Overview............... 41 Members of two classes, Orbiliomycetes and IX. Occurrence and Distribution .............. 41 Pezizomycetes, of Pezizomycotina are consis- A. Parasitic Species . ................. 42 tently shown
    [Show full text]
  • Phylogenomic Evolutionary Surveys of Subtilase Superfamily Genes in Fungi
    www.nature.com/scientificreports OPEN Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi Received: 22 September 2016 Juan Li, Fei Gu, Runian Wu, JinKui Yang & Ke-Qin Zhang Accepted: 28 February 2017 Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected Published: 30 March 2017 to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles. To survive, fungi depend on their ability to harvest nutrients from living or dead organic materials. The eco- logical diversification of fungi is profoundly affected by the array of enzymes they secrete to help them obtain such nutrients. Thus, the differences in their secreted enzymes can have a significant impact on their abilities to colonize plants and animals1. Among these enzymes, a superfamily of serine proteases named subtilases, ubiq- uitous in fungi, is suspected of having distinct functional properties which allowed fungi adapt to different eco- logical niches.
    [Show full text]
  • <I>Neolecta Vitellina
    ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/118.197 Volume 118, pp. 197–201 October–December 2011 Neolecta vitellina, first record from Romania, with notes on habitat and phenology Vasilică Claudiu Chinan 1* & David Hewitt 2 1Faculty of Biology, Alexandru Ioan Cuza University, Bd. Carol I, No. 20A, 700505, Iaşi, Romania 2Department of Botany, Academy of Natural Sciences 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103 USA * Correspondence to: [email protected] Abstract — Neolecta vitellina, one of the rarely collected ascomycete species in Europe, is reported from Romania for the first time. The species was found on the ground, under Norway spruce (Picea abies) in 2004, from the Nature Reserve “Tinovul Mare” Poiana Stampei (Eastern Carpathians, Romania). Subsequent field observations have confirmed the presence of Neolecta vitellina in the same location, in the period 2005–10. A description and photographs of the specimens are presented. Key words — Ascomycota, Neolectaceae, ITS sequence Introduction The genus Neolecta Speg. belongs to the ascomycete family Neolectaceae (Redhead 1977), order Neolectales (Landvik et al. 1993), class Neolectomycetes (Taphrinomycotina, Ascomycota). This genus includes three accepted species —N. flavovirescens Speg., N. irregularis (Peck) Korf & J.K. Rogers, N. vitellina— with clavate, unbranched to lobed yellow ascomata, up to about 7 cm tall (Landvik et al. 2003). Of these three species, only N. vitellina has been reported from Europe (Bresadola 1882, Geitler 1958, Hansen & Knudsen 2000: 48–50, Krieglsteiner 1993: 421, Landvik et al. 2003, Ohenoja 1975, Redhead 1989). Work published by European researchers about Neolecta vitellina refers mainly to phylogeny, morphology and ultrastructure (Landvik 1996, 1998; Landvik et al.
    [Show full text]
  • Citizen Science Facilitates Phylogenetic Placement of Old Species of Non-Lichenised Pezizomycotina Based on Newly Collected Material
    CZECH MYCOLOGY 72(2): 263–280, DECEMBER 16, 2020 (ONLINE VERSION, ISSN 1805-1421) Citizen science facilitates phylogenetic placement of old species of non-lichenised Pezizomycotina based on newly collected material 1 2 1 3 ONDŘEJ KOUKOL ,VIKTORIE HALASŮ ,LUKÁŠ JANOŠÍK ,PATRIK MLČOCH , 4 5 6 ADAM POLHORSKÝ ,MARKÉTA ŠANDOVÁ ,LUCIE ZÍBAROVÁ 1 Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Praha 2, Czech Republic; [email protected] 2 Václava III. 10, CZ-771 00 Olomouc, Czech Republic 3 Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic 4 Pezinská 14, SK-903 01 Senec, Slovakia 5 Mycological Department, National Museum, Cirkusová 1740, CZ-193 00 Praha 9, Czech Republic 6 Resslova 26, CZ-400 01 Ústí nad Labem, Czech Republic Koukol O., Halasů V., Janošík L., Mlčoch P., Polhorský A., Šandová M., Zíbarová L. (2020): Citizen science facilitates phylogenetic placement of old species of non- lichenised Pezizomycotina based on newly collected material. – Czech Mycol. 72(2): 263–280. During the informal Spring Micromyco 2019 meeting, we tested how newly obtained molecular barcodes of common or poorly known saprotrophic microfungi from more or less targeted collec- tions may be useful for identification and taxonomic studies. Our aim was to obtain DNA sequences of fungi enabling their phylogenetic placement and routine identification in the future using molecu- lar barcoding. As a result, DNA of four species was sequenced for the first time, among them Leptosphaeria acuta, for which a new synonym L. urticae is proposed. The new combination Koorchaloma melaloma is proposed for a species previously known as Volutella melaloma and its new synonym is K.
    [Show full text]