cells Article Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters Ozlem Yilmaz 1,2 , François Chauvigné 3, Alba Ferré 3, Frank Nilsen 1, Per Gunnar Fjelldal 2, Joan Cerdà 3 and Roderick Nigel Finn 1,3,* 1 Department of Biological Sciences, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway;
[email protected] (O.Y.);
[email protected] (F.N.) 2 Institute of Marine Research, NO-5817 Bergen, Norway;
[email protected] 3 IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain;
[email protected] (F.C.);
[email protected] (A.F.);
[email protected] (J.C.) * Correspondence: nigel.fi
[email protected] Received: 18 June 2020; Accepted: 8 July 2020; Published: 10 July 2020 Abstract: Transmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids.