Seismic Imaging Using Internal Multiples and Overturned Waves

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Imaging Using Internal Multiples and Overturned Waves Seismic imaging using internal multiples and overturned waves by Alan Richardson Submitted to the Department of Earth, Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geophysics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 © Massachusetts Institute of Technology 2015. All rights reserved. Author............................................................. Department of Earth, Atmospheric and Planetary Sciences February 27, 2015 Certified by . Alison E. Malcolm Associate Professor Thesis Supervisor Accepted by . Robert van der Hilst Schlumberger Professor of Earth Sciences Department Head 2 Seismic imaging using internal multiples and overturned waves by Alan Richardson Submitted to the Department of Earth, Atmospheric and Planetary Sciences on February 27, 2015, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geophysics Abstract Incorporating overturned waves and multiples in seismic imaging is one of the most plausible means by which imaging results might be improved, particularly in regions of complex subsurface structure such as salt bodies. Existing migration methods, such as Reverse Time Migration, are usually designed to image solely with primaries, and so do not make full use of energy propagating along other wave paths. In this thesis I describe several modifications to existing seismic migration algorithms to enable more effective exploitation of the information contained in these arrivals to improve images of subsurface structure. This is achieved by extending a previously proposed modification of one-way migration so that imaging with overturned waves is possible, in addition to multiples and regular primaries. The benefit of using this extension is displayed with a simple box model and the BP model. In the latter, the proposed method is able to image the underside of a salt overhang when even RTM fails, although substantial artifacts are also present. Progressing to the two-way wave equation, I explain three new ways in which a wavefield may be separated by wave propagation direction, and use these in proposed modifications to the RTM algorithm. With these modifications, overturned waves and multiples can be used more effectively, as they no longer risk subtracting from the image contributions of primaries, their amplitude is boosted to produce greater relative amplitude accuracy, and artifacts usually associated with the use of these arrivals are attenuated. The modifications also provide two means of expressing image uncertainty. Among the results I show are a demonstration of the superior image obtained using the proposed method compared to the source-normalized imaging condition, and an improved image of a salt body in the SEAM model. Finally, I describe another modification to RTM that further reduces artifacts associated with the inclusion of multiples, exhibiting its effectiveness with simple layer models, and on a portion of the SEAM model. Thesis Supervisor: Alison E. Malcolm Title: Associate Professor 3 4 Acknowledgments I wish especially to thank my family and Rebecca for their love. Our short lives can sometimes seem difficult, but loving and being loved makes it easier to enjoy thetime that we have. Other graduate students have told me how lucky they think I am to have, in their opinion, the best advisor in the department. Alison is not only caring, dedicated, and approachable, but I feel that she is also very skilled at advising, managing to naturally transition me from a newcomer to geophysics and research into someone who is comfortable working independently in these areas. Some of my colleagues dread meetings with their advisors, but I have enjoyed looking forward to friendly chats with Alison, and the happiness that I felt after the abundant reassurance and encouragement she always gave to me during our meetings. I am also very grateful to Total. Providing my funding for over four years has allowed me to concentrate on my work without being concerned about how I would continue to be paid. Perhaps more importantly, it was through my connection with Total that I met some of the other people who have helped me over the past few years. Especially in the early years of my PhD, Henri Calandra provided a useful industrial perspective on my work. Terrence Liao supervised me during my first summer internship, during which I wrote the RTM code on which I based almost all of the subsequent research I have done. A friend told me that they had never heard me talk as highly of anyone as I do about Paul Williamson. I have been impressed on several occasions by how quickly he has understood what I have been trying to explain, and how he has then able to immediately make insightful observations and share some of his wisdom. I felt privileged that he kindly agreed to serve on my thesis committee, where he made many useful suggestions. Taylor Perron deserves no less of my admiration and gratitude, co-advising me on one of my General Exam projects, participating in my General Exam committee, very patiently and generously helping me to publish my first paper, and also forming part of my thesis committee. As a further example of his generosity, Taylor provided the 5 funding for the remainder of my time at MIT after the end of the Total sponsorship. One of the ways in which the final member of my thesis committee, Mike Fehler, has been instrumental in producing this thesis is very obvious, as he provided me with the SEAM model that I used extensively to validate my ideas. Mike also made many useful suggestions over the years on ways in which I might improve the presentation of my work during practice sessions for SEG and ERL consortium meetings, and found time to meet with me despite his very busy schedule. The first research project I started working on when I came to MIT waswith Chris Hill, which became the project jointly advised by Taylor Perron. I very much enjoyed the time that I spent with Chris, who shared my interest in high performance computing, and he continued to provide encouragement to me even after I moved on to working exclusively on my thesis research. Chris was a member of my General Exam committee, and kindly worked on a General Exam project with me that was outside his primary interest area. One thing that struck me when I arrived at MIT was how much most of the ad- ministrative staff cared about students. Sue Turback, the administrative assistant of ERL during most of my time, went beyond even this. She sometimes jokingly re- ferred to herself as “mom”, but, given her concern for the wellbeing of ERL’s students, this was quite appropriate. It would have been difficult for anyone to replace Sue, but Natalie Counts is doing an excellent job and always greets me with a friendly smile. I must also thank ERL’s executive director, Anna Shaughnessy, who I know would always do anything she can to help, and thoughtfully informed me whenever there were leftovers from meetings. I never had to worry about working out how to get reimbursed for attending conferences thanks to Terri Macloon. The staff of the EAPS Education Office have also always been very kind and impressed me bytheir dedication. Life at MIT is certainly not devoted exclusively to research, and the friendships I have developed with other students over the years have greatly enhanced my time here. Although there are many others, I mention in particular Sudhish Kumar Bakku, Di Yang, Ahmad Zamanian, Lucas Bram Willemsen, Andrey Shabelansky, Yuval Tal, 6 Haoyue Wang, Ali Aljishi, Nasruddin Nazerali, Abdulaziz AlMuhaidib, Junlun Li, Fuxian Song, Beebe Parker, Gabi Melo, Saleh Al Nasser, and Diego Concha, as having been especially important parts of my life. Another very important part of my life over the past five and a half years has been the graduate residence known as “The Warehouse”. It has not only provided me with the most perfect home that I could have wished for, but has also enabled me to be part of a wonderful community outside of the department. Much of what makes the Warehouse so nice is due to the housemasters, both the original, Steve and Lori Lerman, and their successors, John Ochsendorf and Anne Carney. In my first year at MIT I was a very grateful recipient of the Charles M.Vest Presidential Fellowship, made possible by the generosity of the friends of Dr. Charles Vest. As with the funding provided later by Total and Taylor Perron, this relieved me from having to concern myself with anything other than my studies. Although perhaps not as obvious a candidate for acknowledgment as the people who have been part of my life, the creators of the software that I used extensively in my research and thesis writing have also played a large role in making this work possible. Particularly deserving of mention are Vim, Gnuplot, XƎLATEX, Asymptote, and Matlab. I was recently asked by another student what I considered to be the high point of my time at MIT. While there are many tempting choices, such as the euphoric time after passing my General Exam, or field work in St. Lucia with Dale Morgan, I chose not a single experience, or even one directly related to MIT, but instead it was the time I spent on many walks around Boston, particularly by the Charles River, that stood out. It is a beautiful city, and one that I have very much enjoyed living in for this portion of my life. Finally, I am thankful to everyone who has made MIT the wonderful place that it is, and to those who made it possible for me to be here. It has been an immense privilege that I am unreservedly grateful for.
Recommended publications
  • A Subspace Trust-Region Method for Seismic Migration Inversion
    Optimization Methods & Software iFirst, 2012, 1–11 A subspace trust-region method for seismic migration inversion Zhenhua Lia,b and Yanfei Wanga* aKey Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People’s Republic of China; bGraduate University, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China (Received 19 January 2012; final version received 20 June 2012) In seismic exploration, regularized migration inversion of seismic data usually requires solving a weighted least-squares problem with constrains. It is well known that directly solving this problem using some decomposition techniques is very time-consuming, which makes it less possible for practical use. For iterative methods, previous research is mainly on solving the inverse model in a full space. In this paper, a robust subspace method is applied to seismic migration inversion with Gaussian beam representations of Green’s function. The problem is first formulated by incorporating regularizing constraints, and then, it is changed from full space to subspace and solved by a trust-region method. To test the potential of the application of the developed method, synthetic data simulations are performed. The results show that this method is very promising for ill-posed seismic migration inversion problems. Keywords: subspace method; seismic inversion; migration; trust-region method; Gaussian beam AMS Subject Classifications: 86-08; 65J15; 65N21; 90C30 1. Introduction Seismic migration is the core of reflection seismology. How to solve ill-posed inverse problems is one of the key problems in it. At present, seismic migration usually only yields an image of the positions of geological structures, and it has invalid information for subsequent lithology analysis and attributes extraction.
    [Show full text]
  • Imaging Through Gas Clouds: a Case History in the Gulf of Mexico S
    Imaging Through Gas Clouds: A Case History In The Gulf Of Mexico S. Knapp1, N. Payne1, and T. Johns2, Seitel Data1, Houston, Texas: WesternGeco2, Houston, Texas Summary Results from the worlds largest 3D four component OBC seismic survey will be presented. Located in the West Cameron area, offshore Gulf of Mexico, the survey operation totaled over 1000 square kilometers and covered more than 46 OCS blocks. The area contains numerous gas invaded zones and shallow gas anomalies that disturb the image on conventional 3D seismic, which only records compressional data. Converted shear wave data allows images to be obtained that are unobstructed by the gas and/or fluids. This reduces the risk for interpretation and subsequent appraisal and development drilling in complex areas which are clearly petroleum rich. In addition, rock properties can be uniquely determined from the compressional and shear data, allowing for improved reservoir characterization and lithologic prediction. Data acquisition and processing of multicomponent 3D datasets involves both similarities and differences when compared to conventional techniques. Processing for the compressional data is the same as for a conventional OBC survey, however, asymmetric raypaths for the converted waves and the resultant effects on fold-offset-azimuth distribution, binning and velocity determination require radically different processing methodologies. These issues together with methods for determining the optimal parameters of the Vp/Vs ratio (γ) will be discussed. Finally, images from both the compressional (P and Z components summed) and converted shear waves will be shown to illuminate details that were not present on previous 3D datasets. Introduction Multicomponent 3D surveys have become one of the leading areas where state of the art technology is being applied to areas where the exploitation potential has not been fulfilled due to difficulties in obtaining an interpretable seismic image (MacLeod et al 1999, Rognoe et al 1999).
    [Show full text]
  • Migration of Seismic Data
    Migration of Seismic Data IENO GAZDAG AND PIERO SGUAZZERO Invited Paper Reflection seismology seeks to determine the structure of the more accurate thanfinite-difference methods in the earth from seismic records obtained at the surface. The processing space-time coordinate frame. At the same time, the diffrac- of these data by digital computers is aimed at rendering them more tion summation migration was improved and modified on comprehensiblegeologically. Seismic migration is one of these processes. Its purpose is to "migrate" the recorded events to their the basis of theKirchhoff integral representation ofthe correct spatial positions by backward projection or depropagation solutionof the wave equation. The resultingmigration based on wave theoretical considerations. During the last 15 years procedure, known as Kirchhoff migration, compares favor- several methods have appeared on the scene. The purpose of this ably with other methods. A relatively recent advance is paper is to provide an overview of the major advances in this field. Migration methods examined here fall in three major categories: I) represented by reverse-time migration, which is related to integralsolutions, 2) depth extrapolation methods, and 3) time wavefront migration. extrapolation methods. Withinthese categories, the pertinent equa The aim of this paper is to present the fundamental tions and numerical techniques are discussed in some detail. The concepts of migration. While it represents a review of the topic of migration before stacking is treated separately with an state of the art, it is intended to be of tutorial nature. The outline of two different approaches to this important problem. reader is assumed to have no previous knowledge of seismic processing.However, some familiaritywith Fourier I.
    [Show full text]
  • Regional Dependence of Seismic Migration Patterns
    Terr. Atmos. Ocean. Sci., Vol. 23, No. 2, 161-170, April 2012 doi: 10.3319/TAO.2011.10.21.01(T) Regional Dependence of Seismic Migration Patterns Yi-Hsuan Wu1, *, Chien-Chih Chen 2, John B. Rundle 3, and Jeen-Hwa Wang1 1 Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, ROC 2 Department of Earth Sciences and Graduate Institute of Geophysics, National Central University, Jhongli, Taiwan, ROC 3 Center for Computational Sciences and Engineering, UC Davis, Davis, CA, USA Received 24 May 2011, accepted 21 October 2011 ABSTRACT In this study, we used pattern informatics (PI) to visualize patterns in seismic migration for two large earthquakes in Taiwan. The 2D PI migration maps were constructed from the slope values of temporal variations of the distances between the sites and hotspot recognized from the PI map. We investigated the 2D PI migration pattern of the 1999 Chi-Chi and 2006 Pingtung earthquakes which originated from two types of seismotectonic setting. Our results show that the PI hotspots mi- grate toward the hypocenter only when the PI hotspots are generated from specific depth range which is associated with the seismotectonic setting. Therefore, we conclude that the spatiotemporal distribution of events prior to an impending earthquake is significantly affected by tectonics. Key words: Earthquake forecast, Pattern informatics, Precursory seismicity, Seismic migration, Seismic nucleation Citation: Wu, Y. H., C. C. Chen, J. B. Rundle, and J. H. Wang, 2012: Regional dependence of seismic migration patterns. Terr. Atmos. Ocean. Sci., 23, 161- 170, doi: 10.3319/TAO.2011.10.21.01(T) 1. INTRODUCTION To mitigate seismic risks, predicting or forecasting an Some previous studies have investigated precursor ac- impending earthquake is a serious challenge in seismol- tivity before a large earthquake using the PI method (Chen ogy.
    [Show full text]
  • Seismic Reflection and Refraction Methods
    Seismic Reflection and Refraction Methods A. K. Chaubey National Institute of Oceanography, Dona Paula, Goa-403 004. [email protected] Introduction and radar systems. Whereas, in seismic refraction Seismic reflection and refraction is the principal method, principal portion of the wave-path is along the seismic method by which the petroleum industry explores interface between the two layers and hence hydrocarbon-trapping structures in sedimentary basins. approximately horizontal. The travel times of the Its extension to deep crustal studies began in the 1960s, refracted wave paths are then interpreted in terms of the and since the late 1970s these methods have become depths to subsurface interfaces and the speeds at which the principal techniques for detailed studies of the deep wave travels through the subsurface within each layer. crust. These methods are by far the most important For both types of paths the travel time depends upon the geophysical methods and the predominance of these physical property, called elastic parameters, of the methods over other geophysical methods is due to layered Earth and the attitudes of the beds. The various factors such as the higher accuracy, higher objective of the seismic exploration is to deduce resolution and greater penetration. Further, the information about such beds especially about their importance of the seismic methods lies in the fact that attitudes from the observed arrival times and from the data, if properly handled, yield an almost unique and variations in amplitude, frequency and wave form. unambiguous interpretation. These methods utilize the principle of elastic waves travelling with different Both the seismic techniques have specific velocities in different layer formations of the Earth.
    [Show full text]
  • Extended Abstracts
    CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 ISBN: 0-9810595-8 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 2 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts 19-22 August 2018 Dalhousie University Halifax, Nova Scotia, Canada Editors: Ricardo L. Silva, David E. Brown, and Paul J. Post ISBN: 0-9810595-8 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 3 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 4 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Sponsors The organizers of the Conjugate Margins Conference sincerely thank our sponsors, partners, and supporters who contributed financially and/or in-kind to the Conference’s success. Diamond $15,000+ Platinum $10,000 – $14,999 Gold $6,000 – $9,999 and In-Kind Bronze $2,000 – $3,999 and In-Kind Patrons and Supporters $1,000 – $1,999 and In-Kind Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 5 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 6 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Halifax 2018 Organization Organizing Committee David E.
    [Show full text]
  • A Comparative Case Study of Reflection Seismic Imaging Method
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2018 A Comparative Case Study of Reflection Seismic Imaging Method Moones Alamooti University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Geological Engineering Commons Recommended Citation Alamooti, Moones, "A Comparative Case Study of Reflection Seismic Imaging Method" (2018). Electronic Theses and Dissertations. 1317. https://egrove.olemiss.edu/etd/1317 This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. A COMPARATIVE CASE STUDY OF REFLECTION SEISMIC IMAGING METHOD A Thesis presented in partial fulfillment of requirements for the degree of Master of Science in the Department of Geology and Engineering Geology The University of Mississippi by MOONES ALAMOOTI May 2018 Copyright © 2018 by Moones Alamooti All rights reserved. ABSTRACT Reflection seismology is the most common and effective method to gather information on the earth interior. The quality of seismic images is highly variable depending on the complexity of the underground and on how seismic data are acquired and processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data. The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about the complex structure.
    [Show full text]
  • Fault Deformation, Seismic Amplitude and Unsupervised Fault Facies Analysis: Snøhvit Field, Barents Sea
    Accepted Manuscript Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea Jennifer Cunningham, Nestor Cardozo, Christopher Townsend, David Iacopini, Gard Ole Wærum PII: S0191-8141(18)30328-6 DOI: 10.1016/j.jsg.2018.10.010 Reference: SG 3761 To appear in: Journal of Structural Geology Received Date: 10 June 2018 Revised Date: 11 October 2018 Accepted Date: 11 October 2018 Please cite this article as: Cunningham, J., Cardozo, N., Townsend, C., Iacopini, D., Wærum, G.O., Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea, Journal of Structural Geology (2018), doi: https://doi.org/10.1016/j.jsg.2018.10.010. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fault deformation, seismic amplitude and unsupervised fault facies 2 analysis: Snøhvit field, Barents Sea 3 Jennifer CUNNINGHAM * A, Nestor CARDOZO A, Christopher TOWNSEND A, David 4 IACOPINI B and Gard Ole WÆRUM C 5 A Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway 6 *[email protected] , +47 461 84 478 7 [email protected] , [email protected] 8 9 BGeology and Petroleum Geology, School of Geosciences, University of Aberdeen, Meston 10 Building, AB24 FX, UK 11 [email protected] 12 C Equinor ASA, Margrete Jørgensens Veg 4, 9406 Harstad, Norway 13 [email protected] 14 15 Keywords: faults, dip distortion, seismic attributes, seismic amplitude, fault facies.
    [Show full text]
  • Annual Report 2019 Annual Report SM Approved by the SEG Council, 17 June 2020 Connecting the World of Applied Geophysics
    2019 Annual Report 2019 Annual Report SM Approved by the SEG Council, 17 June 2020 Connecting the World of Applied Geophysics REPORTS OF Second vice Director at large REPORTS OF Books Editorial Distinguished GEOPHYSICS SEG BOARD OF president Maria A. Capello COMMITTEES Board Instructor Valentina Socco, editor DIRECTORS Manika Prasad 13 Mauricio Sacchi, chair Short Course 31 10 AGU–SEG 24 Adel El-Emam, chair President Director at large Collaboration 27 Geoscientists Robert R. Stewart Treasurer and Paul S. Cunningham Chi Zhang, cochair Committee on Without Borders® 5 Finance Committee 14 20 University and Distinguished Robert Merrill, chair Dan Ebrom and Lee Student Programs Lecturer 34 President-elect Bell Director at large Annual Meeting Joan Marie Blanco, Gerard Schuster, chair Rick Miller 11 David E. Lumley Steering chair 28 Global Advisory 7 15 Glenn Winters, chair 25 George Buzan, chair Vice president, 20 Emerging 36 Past president Publications Director at large Continuing Professionals Nancy House Sergey Fomel Ruben D. Martinez Annual Meeting Education International Gravity and 8 12 16 Technical Program Malcolm Lansley, chair Johannes Douma, chair Magnetics Dimitri Bevc, chair 25 30 Luise Sander, chair First vice president Chair of the Council Director at large Olga Nedorub, cochair 36 Alexander Mihai Gustavo Jose Carstens Kenneth M. Tubman 22 Development and EVOLVE Popovici 12 16 Production Michael C. Forrest, Health, Safety, 9 Audit Andrew Royle, chair interim chair Security, and Director at large Executive director Bob Brook, chair
    [Show full text]
  • Reflection Seismic Method
    GEOL463 ReflectionReflection SeismicSeismic MethodMethod Principles Data acquisition Processing Data visualization Interpretation* Linkage with other geophysical methods* Reading: Gluyas and Swarbrick, Section 2.3 Many books on reflection seismology (e.g., Telford et al.) SeismicSeismic MethodMethod TheThe onlyonly methodmethod givinggiving completecomplete picturepicture ofof thethe wholewhole areaarea GivesGives byby farfar thethe bestbest resolutionresolution amongamong otherother geophysicalgeophysical methodsmethods (gravity(gravity andand magnetic)magnetic) However, the resolution is still limited MapsMaps rockrock propertiesproperties relatedrelated toto porosityporosity andand permeability,permeability, andand presencepresence ofof gasgas andand fluidsfluids However, the links may still be non-unique RequiresRequires significantsignificant logisticallogistical efforteffort ReliesRelies onon extensiveextensive datadata processingprocessing andand inversioninversion GEOL463 SeismicSeismic ReflectionReflection ImagingImaging Acoustic (pressure) source is set off near the surface… Sound waves propagate in all directions from the source… This is the “ideal” 0.1-10% of the energy reflects of seismic imaging – flat surface and from subsurface contrasts… collocated sources This energy is recorded by and receivers surface or borehole “geophones”… In practice, multi-fold, offset recording is Times and amplitudes of these used, and zero-offset section is obtained by reflections are used to interpret extensive data the subsurface… processing
    [Show full text]
  • Ocean Margin Drilling
    Ocean Margin Drilling May 1980 NTIS order #PB80-198302 Library of Congress Catalog Card Number 80-600083 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock No. 052-003-00754-1 PREFACE This Technical Memorandum was prepared in response to a request from the Chairman and the Ranking Minority Member of the HUD-Independent Agencies Subcommittee of the Senate Appropriations Committee. The Committee requested that OTA conduct an evaluation of the Ocean Margin Drilling Program, a major new public-private cooperative research effort in marine geology proposed by the National Science Foundation. They were particularly interested in the scientific merits of the program and whether other, less costly alternatives could yield the same or greater scientific return. Because OTA already had a more general ongoing study of ocean research technology, the agency was able to respond quickly to this request. The Memorandum was prepared with the advice and assistance of a small panel of scientists plus a much broader group of scientists, engineers, petroleum company representatives, and others who submitted material for our use and reviewed our draft report. The study discusses the scientific merit of the program, possible alternatives to the present program plan, problems associated with technology development, aspects of petroleum company participation in the program, and government management considerations. There are also appendices including specific alternatives proposed by the OTA panel members and historical factors leading to the present plans. JOHN H. GIBBONS Director iii OTA Staff for Review of the Ocean Margin Drilling Program Robert Niblock, Ocean Program Manager Peter A.
    [Show full text]
  • Changing Prodcutivity in U.S. Petroleum Exploration And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics CHANGING PRODUCTIVITY IN U.S. PETROLEUM EXPLORATION AND DEVELOPMENT Douglas R. Bohi Charles River Associates Washington, D.C. Discussion Paper 98-38 June 1998 1616 P Street, NW Washington, DC 20036 Telephone 202-328-5000 Fax 202-939-3460 © 1998 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the author. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not undergone formal peer review or the editorial treatment accorded RFF books and other publications. Changing Productivity in U.S. Petroleum Exploration and Development Douglas R. Bohi Abstract This study analyzes sources of productivity change in petroleum exploration and development in the United States over the last ten years. There have been several major developments in the industry over the last decade that have led to dramatic reductions in the cost of finding and developing oil and natural gas resources. While some of the cost savings are organizational and institutional in nature, the most important changes are in the application of new technologies used to find and produce oil and gas: 3D seismology, horizontal drilling, and deepwater drilling. Not all the innovation is endogenous to the industry; some rests on outside advances (such as advances in high-speed computing that enabled 3D seismology), as well as learning-by-doing. The increased productivity of mature petroleum provinces like the U.S. helps to maintain competition in the world oil market as well as enhance domestic industry returns.
    [Show full text]