The Seismic Reflection Inverse Problem

Total Page:16

File Type:pdf, Size:1020Kb

The Seismic Reflection Inverse Problem Inverse Problems TOPICAL REVIEW Related content - A comparison of seismic velocity inversion The seismic reflection inverse problem methods for layered acoustics - A mathematical framework for inverse To cite this article: W W Symes 2009 Inverse Problems 25 123008 wave problems in heterogeneous media - A method for inverse scattering based on the generalized Bremmer coupling series View the article online for updates and enhancements. Recent citations - On quasi-seismic wave propagation in highly anisotropic triclinic layer between distinct semi-infinite triclinic geomedia Pato Kumari and Neha - Reduced Order Model Approach to Inverse Scattering Liliana Borcea et al - Seismic wavefield redatuming with regularized multi-dimensional deconvolution Nick Luiken and Tristan van Leeuwen This content was downloaded from IP address 189.46.171.20 on 21/10/2020 at 04:11 IOP PUBLISHING INVERSE PROBLEMS Inverse Problems 25 (2009) 123008 (39pp) doi:10.1088/0266-5611/25/12/123008 TOPICAL REVIEW The seismic reflection inverse problem W W Symes Computational and Applied Mathematics, Rice University, MS 134, Rice University, Houston, TX 77005, USA E-mail: [email protected] Received 3 July 2009, in final form 2 September 2009 Published 1 December 2009 Online at stacks.iop.org/IP/25/123008 Abstract The seismic reflection method seeks to extract maps of the Earth’s sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth’s structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. 1. Introduction Reflection seismology is the main tool used by the oil and gas industry to map petroleum deposits in the Earth’s upper crust. Environmental and civil engineers also use variants of the technique to locate bedrock, aquifers and other near-surface features, and academic geophysicists have extended it to a tool for imaging the lower crust and mantle. Seismic wave propagation, the physical phenomenon underlying the reflection method as well as other types of seismology, is modeled with reasonable accuracy as small-amplitude displacement of a continuum, using various specializations and generalizations of linear elastodynamics. In these models, the various mechanical properties of rock regulating the wave propagation phenomenon appear as spatially varying coefficients in a system of time- dependent hyperbolic linear partial differential equations (‘PDEs’). (Somewhat confusingly, 0266-5611/09/123008+39$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1 Inverse Problems 25 (2009) 123008 Topical Review the literature on this subject also uses the word ‘model’ to connote the collection of coefficients characterizing an instance of a continuum mechanical model. I shall also use the word in this sense.) Thus the main goal of reflection seismology could be construed as the solution of inverse problems for certain PDEs. The data of the reflection seismology inverse problem are samples of the solutions of these PDEs, in the form of time series of pressure or related quantities collected at points corresponding to locations of seismic sensors (the common name for these is ‘receivers’). The solution of the inverse problem is the model (collection of coefficient functions), and the implicit relation between data and solution is the system of PDEs. It should also be noted that seismic surveys are multiexperiments: that is, they consist of a number of more or less identical individual experiments (commonly called ‘shots’), from each of which part of the data is collected. In modeling terms, the data are samples taken from solutions of a family of linear PDEs, sharing the same coefficients but with different (and, to some extent, known) right-hand sides. Geophysicists have developed a variety of methods for the approximate solution of this inverse problem. In many cases, these methods were not originally construed as solutions of inverse problems for PDEs, but as processes which convert seismic data to images of the Earth’s interior. The purpose of this review is to overview the mathematical understanding of these seismic imaging methods that has developed almost entirely over the last 25 years. This understanding has both illuminated the rationale and performance of methods used in practice and suggested improvements and alternatives to widely used processes as well as algorithms to extract previously inaccessible information from the data. Amongst other things, the mathematical meaning of the word ‘imaging’ has become much clearer, along with the relation between imaging and inversion. New approaches to solution of inverse problems for hyperbolic PDEs have also emerged from this study. Two central themes pervade this subject. The first is the importance of single scattering, which in mathematical terms is more or less equivalent to linearization of the equations of motion with respect to the model (coefficients), at a smooth model. That single scattering is apparent at all is somewhat surprising, since rocks are typically highly heterogeneous, exhibiting spatial structure at all scales from micrometers to kilometers. Given an appropriate relation between wavelengths, travel distances and correlation lengths of material structures, elastodynamics can produces diffuse fields (Weaver and Lobkis 2006), in which the singly scattered waves are submerged in a sea of multiple scattering. A similar phenomenon occurs in optical tomography of biological tissue, in which ballistic photons typically play an insignificant role (Arridge 1999). The onset of elastodynamic diffusion may in fact limit the scope of the seismic reflection method (Delprat-Jannaud and Lailly 2005). On the other hand, frequencies, length scales, times and distances appear to conspire to produce at least discernible, if not dominant, single scattering in much reflection data from the upper crust. This is the fact upon which the state of the art in reflection seismic imaging is founded. The linearization of the equations of motion with respect to the coefficients results in small error when the background or reference model is smooth, and the perturbation is oscillatory. (The words ‘smooth’ and ‘oscillatory’ are vague—a precise sense for this decomposition is discussed below.) Linearization defines a linear map from coefficient perturbations to data perturbations (sampled solution perturbations). This linear map has been studied extensively in the last 25 years, and the story that has emerged is one of the two main topics of this review. The main results follow from its oscillatory integral representation: it is a so-called Fourier integral operator, a class of oscillatory integral operators developed by Hormander¨ and others to represent the solutions of non-elliptic PDEs (Hormander¨ 1971, 1983). These operators have singularity mapping properties which facilitate an explanation of the relation between imaging and inversion, and indeed motivate a definition of imaging. Critical geological features— 2 Inverse Problems 25 (2009) 123008 Topical Review transitions over very short distances from one type of rock to another with different mechanical characteristics—amount to singular (nonsmooth) or approximately singular features in the coefficient functions. If one defines an image of an Earth structure model as any function which has the same singularities (precise definition below) as an algebraic combination of the coefficient functions of a model, then the mapping properties of the linearized operator explain why solution of the linearized inverse problem results in an image. Also, the imaging processes developed in the seismic literature are approximations in various senses of the linearized inverse, retaining its singularity mapping properties. This picture developed starting in the 1980s with the work of Beylkin (1985), Rakesh (1988), Beylkin and Burridge (1990) and others. The relation between widely used imaging (‘migration’) methods and linearized inversion was already implicit in the pathbreaking work of Cohen and Bleistein (1977, 1979) and was further developed by Lailly (1983, 1984) and many others. Bleistein (1999) provides an overview of this history; I give another below. The second pervasive theme is the compensation for data incompleteness in one sense (spectral) by data redundancy in another sense (spatial). For excellent physical reasons, seismic time series are spectrally incomplete—Fourier components at both very low and very high frequencies are below the noise level. The lack of very high frequencies means that singularities cannot actually
Recommended publications
  • Imaging Through Gas Clouds: a Case History in the Gulf of Mexico S
    Imaging Through Gas Clouds: A Case History In The Gulf Of Mexico S. Knapp1, N. Payne1, and T. Johns2, Seitel Data1, Houston, Texas: WesternGeco2, Houston, Texas Summary Results from the worlds largest 3D four component OBC seismic survey will be presented. Located in the West Cameron area, offshore Gulf of Mexico, the survey operation totaled over 1000 square kilometers and covered more than 46 OCS blocks. The area contains numerous gas invaded zones and shallow gas anomalies that disturb the image on conventional 3D seismic, which only records compressional data. Converted shear wave data allows images to be obtained that are unobstructed by the gas and/or fluids. This reduces the risk for interpretation and subsequent appraisal and development drilling in complex areas which are clearly petroleum rich. In addition, rock properties can be uniquely determined from the compressional and shear data, allowing for improved reservoir characterization and lithologic prediction. Data acquisition and processing of multicomponent 3D datasets involves both similarities and differences when compared to conventional techniques. Processing for the compressional data is the same as for a conventional OBC survey, however, asymmetric raypaths for the converted waves and the resultant effects on fold-offset-azimuth distribution, binning and velocity determination require radically different processing methodologies. These issues together with methods for determining the optimal parameters of the Vp/Vs ratio (γ) will be discussed. Finally, images from both the compressional (P and Z components summed) and converted shear waves will be shown to illuminate details that were not present on previous 3D datasets. Introduction Multicomponent 3D surveys have become one of the leading areas where state of the art technology is being applied to areas where the exploitation potential has not been fulfilled due to difficulties in obtaining an interpretable seismic image (MacLeod et al 1999, Rognoe et al 1999).
    [Show full text]
  • Seismic Reflection Inversion with Basis Pursuit
    Seismic sparse-layer reflectivity inversion using basis pursuit decomposition Rui Zhang and John Castagna 4800 Calhoun Rd, Department of Earth and Atmospheric Sciences, University of Houston Houston, TX, 77204 ABSTRACT Basis pursuit inversion of seismic reflection data for reflection coefficients is introduced as an alternative method of incorporating a priori information in a seismic inversion process. The inversion is accomplished by building a dictionary of functions, representing seismic reflection responses, and constituting the seismic trace as a superposition of these responses. Basis pursuit decomposition finds a sparse number of reflection responses that sum to form the seismic trace. When the dictionary of functions is chosen to be a wedge model of reflection coefficient pairs convolved with the seismic wavelet, the resulting reflectivity inversion is a sparse-layer inversion, rather than a sparse-spike inversion. Synthetic tests show that sparse-layer inversion using basis pursuit can better resolve thin beds than a comparable sparse-spike inversion can. Application to field data indicates that sparse-layer inversion results in potentially improved detectability and resolution of some thin layers and reveals apparent stratigraphic features that are not readily seen on conventional seismic sections. INTRODUCTION In conventional seismic deconvolution, the seismogram is convolved with a wavelet inverse filter to yield band limited reflectivity. The output reflectivity is band- limited to the original frequency band of the data so as to avoid blowing up noise at frequencies with little or no signal. It has long been established (e.g., Riel and Berkhout; 1985) that sparse seismic inversion methods can produce output reflectivity solutions that contain frequencies that are not contained in the original signal without necessarily magnifying noise at those frequencies.
    [Show full text]
  • Best Research Support and Anti-Plagiarism Services and Training
    CleanScript Group – best research support and anti-plagiarism services and training List of oil field acronyms The oil and gas industry uses many jargons, acronyms and abbreviations. Obviously, this list is not anywhere near exhaustive or definitive, but this should be the most comprehensive list anywhere. Mostly coming from user contributions, it is contextual and is meant for indicative purposes only. It should not be relied upon for anything but general information. # 2D - Two dimensional (geophysics) 2P - Proved and Probable Reserves 3C - Three components seismic acquisition (x,y and z) 3D - Three dimensional (geophysics) 3DATW - 3 Dimension All The Way 3P - Proved, Probable and Possible Reserves 4D - Multiple Three dimensional's overlapping each other (geophysics) 7P - Prior Preparation and Precaution Prevents Piss Poor Performance, also Prior Proper Planning Prevents Piss Poor Performance A A&D - Acquisition & Divestment AADE - American Association of Drilling Engineers [1] AAPG - American Association of Petroleum Geologists[2] AAODC - American Association of Oilwell Drilling Contractors (obsolete; superseded by IADC) AAR - After Action Review (What went right/wrong, dif next time) AAV - Annulus Access Valve ABAN - Abandonment, (also as AB) ABCM - Activity Based Costing Model AbEx - Abandonment Expense ACHE - Air Cooled Heat Exchanger ACOU - Acoustic ACQ - Annual Contract Quantity (in reference to gas sales) ACQU - Acquisition Log ACV - Approved/Authorized Contract Value AD - Assistant Driller ADE - Asphaltene
    [Show full text]
  • Seismic Reflection and Refraction Methods
    Seismic Reflection and Refraction Methods A. K. Chaubey National Institute of Oceanography, Dona Paula, Goa-403 004. [email protected] Introduction and radar systems. Whereas, in seismic refraction Seismic reflection and refraction is the principal method, principal portion of the wave-path is along the seismic method by which the petroleum industry explores interface between the two layers and hence hydrocarbon-trapping structures in sedimentary basins. approximately horizontal. The travel times of the Its extension to deep crustal studies began in the 1960s, refracted wave paths are then interpreted in terms of the and since the late 1970s these methods have become depths to subsurface interfaces and the speeds at which the principal techniques for detailed studies of the deep wave travels through the subsurface within each layer. crust. These methods are by far the most important For both types of paths the travel time depends upon the geophysical methods and the predominance of these physical property, called elastic parameters, of the methods over other geophysical methods is due to layered Earth and the attitudes of the beds. The various factors such as the higher accuracy, higher objective of the seismic exploration is to deduce resolution and greater penetration. Further, the information about such beds especially about their importance of the seismic methods lies in the fact that attitudes from the observed arrival times and from the data, if properly handled, yield an almost unique and variations in amplitude, frequency and wave form. unambiguous interpretation. These methods utilize the principle of elastic waves travelling with different Both the seismic techniques have specific velocities in different layer formations of the Earth.
    [Show full text]
  • Evolution of the Stress and Strain Field in the Tyra Field During the Post-Chalk Deposition and Seismic Inversion of Fault Zone Using Informed-Proposal Monte Carlo
    Stress and strain during the Post-Chalk Deposition Evolution of the Stress and Strain field in the Tyra field during the Post-Chalk Deposition and Seismic Inversion of fault zone using Informed-Proposal Monte Carlo Sarouyeh Khoshkholgh, Ivanka Orozova-Bekkevold and Klaus Mosegaard Niels Bohr Institute University of Copenhagen September, 2021 Table of Contents Introduction………………………………………………………………………………………………………………………....2 Well Data………………………………………………………………………………………………………………………………3 Modelling of the Post-Chalk overburden in the Tyra field………………………………………………………5 Numerical representation of the Post-Chalk Deposition in the Tyra field………………………………………..6 Finite elements modelling of the Post-Chalk Deposition in the Tyra field………………………………………..9 Results: Evolution of the Stress and Strain state in the Tyra Field during the Cenozoic Deposition…………………………………………………………………………………………………………………..………12 Seismic Study of the Fault Detection Limit……………………………………………………………………………13 Seimic Inversion…………………………………………………………………………………………………………………..……….14 Results: Seismic Inversion…………………………………………………………………………………………………….17 Conclusions and Discussions……………………………………………………………………………………….…..…..22 Acknowledgements……………………………………………………………………………………………………………..23 References…………………………………………………………………………………………………………………………..24 Abstract When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and risk assessment is essential. An integration of information from geological knowledge, geological modelling, well log data, and geophysical data provides
    [Show full text]
  • CONVENTIONAL OIL and GAS EXPLORATION Improving Cost Control and Efficiencies to Meet Today’S Exploration Challenges Table of Contents
    CONVENTIONAL OIL AND GAS EXPLORATION Improving cost control and efficiencies to meet today’s exploration challenges Table of Contents INTRODUCTION ................................................................................................................ 1 Exploration impact of downturn ................................................................................... 1 Signs of recovery ............................................................................................................. 1 Exploration challenges ahead ...................................................................................... 2 REVISTING MATURE BASINS TO UNLOCK POTENTIAL ..................................................... 3 SOFTWARE TO OPTIMISE MATURE BASIN EXPLORATION ............................................... 4 FRONTIER AND UNDER-EXPLORED BASINS ....................................................................... 5 Reducing uncertainty and increasing chances of success ...................................... 6 SOFTWARE TO ENHANCE FRONTIER AND UNDER-EXPLORED BASIN EXPLORATION ... 7 MEETING DEEPWATER CHALLENGES ............................................................................... 8 Geopressure models for well planning ......................................................................... 8 UNDERSTANDING AND MINIMISING RISK IN HIGH PRESSURE AND HIGH TEMPERATURE ENVIRONMENTS ....................................................................................... 9 Improving prediction accuracy ..................................................................................
    [Show full text]
  • Joint Flow–Seismic Inversion for Characterizing Fractured Reservoirs
    Joint flow–seismic inversion for characterizing fractured reservoirs: theoretical approach and numer- ical modeling Peter K. Kang⇤, Yingcai Zheng, Xinding Fang, Rafal Wojcik, Dennis McLaughlin, Stephen Brown, Michael C. Fehler, Daniel R. Burns and Ruben Juanes, Massachusetts Institute of Technology SUMMARY ments into the seismic interpretation; on the other, improve the predictability of reservoir models by making joint use of seis- Traditionally, seismic interpretation is performed without any mic and flow data. account of the flow behavior. Here, we present a methodol- ogy to characterize fractured geologic media by integrating The basic tenet of our proposed framework is that there is a flow and seismic data. The key element of the proposed ap- strong dependence between fracture permeability (which drives proach is the identification of the intimate relation between the flow response) and fracture compliance (which drives the acoustic and flow responses of a fractured reservoir through seismic response). This connection has long been recognized the fracture compliance. By means of synthetic models, we (Pyrak-Nolte and Morris, 2000; Brown and Fang, 2012), and show that: (1) owing to the strong (but highly uncertain) de- recent works have pointed to the potential of exploiting that pendence of fracture permeability on fracture compliance, the connection (Vlastos et al., 2006; Zhang et al., 2009). Here, modeled flow response in a fractured reservoir is highly sensi- we propose a formal approach to improved characterization of tive to the geophysical interpretation; and (2) by incorporating fractured reservoirs, and improved reservoir flow predictions, flow data (well pressures and production curves) into the inver- by making joint use of the seismic and flow response.
    [Show full text]
  • Extended Abstracts
    CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 ISBN: 0-9810595-8 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 2 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts 19-22 August 2018 Dalhousie University Halifax, Nova Scotia, Canada Editors: Ricardo L. Silva, David E. Brown, and Paul J. Post ISBN: 0-9810595-8 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 3 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 4 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Sponsors The organizers of the Conjugate Margins Conference sincerely thank our sponsors, partners, and supporters who contributed financially and/or in-kind to the Conference’s success. Diamond $15,000+ Platinum $10,000 – $14,999 Gold $6,000 – $9,999 and In-Kind Bronze $2,000 – $3,999 and In-Kind Patrons and Supporters $1,000 – $1,999 and In-Kind Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 5 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 6 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Halifax 2018 Organization Organizing Committee David E.
    [Show full text]
  • Fault Deformation, Seismic Amplitude and Unsupervised Fault Facies Analysis: Snøhvit Field, Barents Sea
    Accepted Manuscript Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea Jennifer Cunningham, Nestor Cardozo, Christopher Townsend, David Iacopini, Gard Ole Wærum PII: S0191-8141(18)30328-6 DOI: 10.1016/j.jsg.2018.10.010 Reference: SG 3761 To appear in: Journal of Structural Geology Received Date: 10 June 2018 Revised Date: 11 October 2018 Accepted Date: 11 October 2018 Please cite this article as: Cunningham, J., Cardozo, N., Townsend, C., Iacopini, D., Wærum, G.O., Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea, Journal of Structural Geology (2018), doi: https://doi.org/10.1016/j.jsg.2018.10.010. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fault deformation, seismic amplitude and unsupervised fault facies 2 analysis: Snøhvit field, Barents Sea 3 Jennifer CUNNINGHAM * A, Nestor CARDOZO A, Christopher TOWNSEND A, David 4 IACOPINI B and Gard Ole WÆRUM C 5 A Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway 6 *[email protected] , +47 461 84 478 7 [email protected] , [email protected] 8 9 BGeology and Petroleum Geology, School of Geosciences, University of Aberdeen, Meston 10 Building, AB24 FX, UK 11 [email protected] 12 C Equinor ASA, Margrete Jørgensens Veg 4, 9406 Harstad, Norway 13 [email protected] 14 15 Keywords: faults, dip distortion, seismic attributes, seismic amplitude, fault facies.
    [Show full text]
  • Annual Report 2019 Annual Report SM Approved by the SEG Council, 17 June 2020 Connecting the World of Applied Geophysics
    2019 Annual Report 2019 Annual Report SM Approved by the SEG Council, 17 June 2020 Connecting the World of Applied Geophysics REPORTS OF Second vice Director at large REPORTS OF Books Editorial Distinguished GEOPHYSICS SEG BOARD OF president Maria A. Capello COMMITTEES Board Instructor Valentina Socco, editor DIRECTORS Manika Prasad 13 Mauricio Sacchi, chair Short Course 31 10 AGU–SEG 24 Adel El-Emam, chair President Director at large Collaboration 27 Geoscientists Robert R. Stewart Treasurer and Paul S. Cunningham Chi Zhang, cochair Committee on Without Borders® 5 Finance Committee 14 20 University and Distinguished Robert Merrill, chair Dan Ebrom and Lee Student Programs Lecturer 34 President-elect Bell Director at large Annual Meeting Joan Marie Blanco, Gerard Schuster, chair Rick Miller 11 David E. Lumley Steering chair 28 Global Advisory 7 15 Glenn Winters, chair 25 George Buzan, chair Vice president, 20 Emerging 36 Past president Publications Director at large Continuing Professionals Nancy House Sergey Fomel Ruben D. Martinez Annual Meeting Education International Gravity and 8 12 16 Technical Program Malcolm Lansley, chair Johannes Douma, chair Magnetics Dimitri Bevc, chair 25 30 Luise Sander, chair First vice president Chair of the Council Director at large Olga Nedorub, cochair 36 Alexander Mihai Gustavo Jose Carstens Kenneth M. Tubman 22 Development and EVOLVE Popovici 12 16 Production Michael C. Forrest, Health, Safety, 9 Audit Andrew Royle, chair interim chair Security, and Director at large Executive director Bob Brook, chair
    [Show full text]
  • Reflection Seismic Method
    GEOL463 ReflectionReflection SeismicSeismic MethodMethod Principles Data acquisition Processing Data visualization Interpretation* Linkage with other geophysical methods* Reading: Gluyas and Swarbrick, Section 2.3 Many books on reflection seismology (e.g., Telford et al.) SeismicSeismic MethodMethod TheThe onlyonly methodmethod givinggiving completecomplete picturepicture ofof thethe wholewhole areaarea GivesGives byby farfar thethe bestbest resolutionresolution amongamong otherother geophysicalgeophysical methodsmethods (gravity(gravity andand magnetic)magnetic) However, the resolution is still limited MapsMaps rockrock propertiesproperties relatedrelated toto porosityporosity andand permeability,permeability, andand presencepresence ofof gasgas andand fluidsfluids However, the links may still be non-unique RequiresRequires significantsignificant logisticallogistical efforteffort ReliesRelies onon extensiveextensive datadata processingprocessing andand inversioninversion GEOL463 SeismicSeismic ReflectionReflection ImagingImaging Acoustic (pressure) source is set off near the surface… Sound waves propagate in all directions from the source… This is the “ideal” 0.1-10% of the energy reflects of seismic imaging – flat surface and from subsurface contrasts… collocated sources This energy is recorded by and receivers surface or borehole “geophones”… In practice, multi-fold, offset recording is Times and amplitudes of these used, and zero-offset section is obtained by reflections are used to interpret extensive data the subsurface… processing
    [Show full text]
  • Ocean Margin Drilling
    Ocean Margin Drilling May 1980 NTIS order #PB80-198302 Library of Congress Catalog Card Number 80-600083 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock No. 052-003-00754-1 PREFACE This Technical Memorandum was prepared in response to a request from the Chairman and the Ranking Minority Member of the HUD-Independent Agencies Subcommittee of the Senate Appropriations Committee. The Committee requested that OTA conduct an evaluation of the Ocean Margin Drilling Program, a major new public-private cooperative research effort in marine geology proposed by the National Science Foundation. They were particularly interested in the scientific merits of the program and whether other, less costly alternatives could yield the same or greater scientific return. Because OTA already had a more general ongoing study of ocean research technology, the agency was able to respond quickly to this request. The Memorandum was prepared with the advice and assistance of a small panel of scientists plus a much broader group of scientists, engineers, petroleum company representatives, and others who submitted material for our use and reviewed our draft report. The study discusses the scientific merit of the program, possible alternatives to the present program plan, problems associated with technology development, aspects of petroleum company participation in the program, and government management considerations. There are also appendices including specific alternatives proposed by the OTA panel members and historical factors leading to the present plans. JOHN H. GIBBONS Director iii OTA Staff for Review of the Ocean Margin Drilling Program Robert Niblock, Ocean Program Manager Peter A.
    [Show full text]