The Seismic Reflection Inverse Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Imaging Through Gas Clouds: a Case History in the Gulf of Mexico S
Imaging Through Gas Clouds: A Case History In The Gulf Of Mexico S. Knapp1, N. Payne1, and T. Johns2, Seitel Data1, Houston, Texas: WesternGeco2, Houston, Texas Summary Results from the worlds largest 3D four component OBC seismic survey will be presented. Located in the West Cameron area, offshore Gulf of Mexico, the survey operation totaled over 1000 square kilometers and covered more than 46 OCS blocks. The area contains numerous gas invaded zones and shallow gas anomalies that disturb the image on conventional 3D seismic, which only records compressional data. Converted shear wave data allows images to be obtained that are unobstructed by the gas and/or fluids. This reduces the risk for interpretation and subsequent appraisal and development drilling in complex areas which are clearly petroleum rich. In addition, rock properties can be uniquely determined from the compressional and shear data, allowing for improved reservoir characterization and lithologic prediction. Data acquisition and processing of multicomponent 3D datasets involves both similarities and differences when compared to conventional techniques. Processing for the compressional data is the same as for a conventional OBC survey, however, asymmetric raypaths for the converted waves and the resultant effects on fold-offset-azimuth distribution, binning and velocity determination require radically different processing methodologies. These issues together with methods for determining the optimal parameters of the Vp/Vs ratio (γ) will be discussed. Finally, images from both the compressional (P and Z components summed) and converted shear waves will be shown to illuminate details that were not present on previous 3D datasets. Introduction Multicomponent 3D surveys have become one of the leading areas where state of the art technology is being applied to areas where the exploitation potential has not been fulfilled due to difficulties in obtaining an interpretable seismic image (MacLeod et al 1999, Rognoe et al 1999). -
Seismic Reflection Inversion with Basis Pursuit
Seismic sparse-layer reflectivity inversion using basis pursuit decomposition Rui Zhang and John Castagna 4800 Calhoun Rd, Department of Earth and Atmospheric Sciences, University of Houston Houston, TX, 77204 ABSTRACT Basis pursuit inversion of seismic reflection data for reflection coefficients is introduced as an alternative method of incorporating a priori information in a seismic inversion process. The inversion is accomplished by building a dictionary of functions, representing seismic reflection responses, and constituting the seismic trace as a superposition of these responses. Basis pursuit decomposition finds a sparse number of reflection responses that sum to form the seismic trace. When the dictionary of functions is chosen to be a wedge model of reflection coefficient pairs convolved with the seismic wavelet, the resulting reflectivity inversion is a sparse-layer inversion, rather than a sparse-spike inversion. Synthetic tests show that sparse-layer inversion using basis pursuit can better resolve thin beds than a comparable sparse-spike inversion can. Application to field data indicates that sparse-layer inversion results in potentially improved detectability and resolution of some thin layers and reveals apparent stratigraphic features that are not readily seen on conventional seismic sections. INTRODUCTION In conventional seismic deconvolution, the seismogram is convolved with a wavelet inverse filter to yield band limited reflectivity. The output reflectivity is band- limited to the original frequency band of the data so as to avoid blowing up noise at frequencies with little or no signal. It has long been established (e.g., Riel and Berkhout; 1985) that sparse seismic inversion methods can produce output reflectivity solutions that contain frequencies that are not contained in the original signal without necessarily magnifying noise at those frequencies. -
Best Research Support and Anti-Plagiarism Services and Training
CleanScript Group – best research support and anti-plagiarism services and training List of oil field acronyms The oil and gas industry uses many jargons, acronyms and abbreviations. Obviously, this list is not anywhere near exhaustive or definitive, but this should be the most comprehensive list anywhere. Mostly coming from user contributions, it is contextual and is meant for indicative purposes only. It should not be relied upon for anything but general information. # 2D - Two dimensional (geophysics) 2P - Proved and Probable Reserves 3C - Three components seismic acquisition (x,y and z) 3D - Three dimensional (geophysics) 3DATW - 3 Dimension All The Way 3P - Proved, Probable and Possible Reserves 4D - Multiple Three dimensional's overlapping each other (geophysics) 7P - Prior Preparation and Precaution Prevents Piss Poor Performance, also Prior Proper Planning Prevents Piss Poor Performance A A&D - Acquisition & Divestment AADE - American Association of Drilling Engineers [1] AAPG - American Association of Petroleum Geologists[2] AAODC - American Association of Oilwell Drilling Contractors (obsolete; superseded by IADC) AAR - After Action Review (What went right/wrong, dif next time) AAV - Annulus Access Valve ABAN - Abandonment, (also as AB) ABCM - Activity Based Costing Model AbEx - Abandonment Expense ACHE - Air Cooled Heat Exchanger ACOU - Acoustic ACQ - Annual Contract Quantity (in reference to gas sales) ACQU - Acquisition Log ACV - Approved/Authorized Contract Value AD - Assistant Driller ADE - Asphaltene -
Seismic Reflection and Refraction Methods
Seismic Reflection and Refraction Methods A. K. Chaubey National Institute of Oceanography, Dona Paula, Goa-403 004. [email protected] Introduction and radar systems. Whereas, in seismic refraction Seismic reflection and refraction is the principal method, principal portion of the wave-path is along the seismic method by which the petroleum industry explores interface between the two layers and hence hydrocarbon-trapping structures in sedimentary basins. approximately horizontal. The travel times of the Its extension to deep crustal studies began in the 1960s, refracted wave paths are then interpreted in terms of the and since the late 1970s these methods have become depths to subsurface interfaces and the speeds at which the principal techniques for detailed studies of the deep wave travels through the subsurface within each layer. crust. These methods are by far the most important For both types of paths the travel time depends upon the geophysical methods and the predominance of these physical property, called elastic parameters, of the methods over other geophysical methods is due to layered Earth and the attitudes of the beds. The various factors such as the higher accuracy, higher objective of the seismic exploration is to deduce resolution and greater penetration. Further, the information about such beds especially about their importance of the seismic methods lies in the fact that attitudes from the observed arrival times and from the data, if properly handled, yield an almost unique and variations in amplitude, frequency and wave form. unambiguous interpretation. These methods utilize the principle of elastic waves travelling with different Both the seismic techniques have specific velocities in different layer formations of the Earth. -
Evolution of the Stress and Strain Field in the Tyra Field During the Post-Chalk Deposition and Seismic Inversion of Fault Zone Using Informed-Proposal Monte Carlo
Stress and strain during the Post-Chalk Deposition Evolution of the Stress and Strain field in the Tyra field during the Post-Chalk Deposition and Seismic Inversion of fault zone using Informed-Proposal Monte Carlo Sarouyeh Khoshkholgh, Ivanka Orozova-Bekkevold and Klaus Mosegaard Niels Bohr Institute University of Copenhagen September, 2021 Table of Contents Introduction………………………………………………………………………………………………………………………....2 Well Data………………………………………………………………………………………………………………………………3 Modelling of the Post-Chalk overburden in the Tyra field………………………………………………………5 Numerical representation of the Post-Chalk Deposition in the Tyra field………………………………………..6 Finite elements modelling of the Post-Chalk Deposition in the Tyra field………………………………………..9 Results: Evolution of the Stress and Strain state in the Tyra Field during the Cenozoic Deposition…………………………………………………………………………………………………………………..………12 Seismic Study of the Fault Detection Limit……………………………………………………………………………13 Seimic Inversion…………………………………………………………………………………………………………………..……….14 Results: Seismic Inversion…………………………………………………………………………………………………….17 Conclusions and Discussions……………………………………………………………………………………….…..…..22 Acknowledgements……………………………………………………………………………………………………………..23 References…………………………………………………………………………………………………………………………..24 Abstract When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and risk assessment is essential. An integration of information from geological knowledge, geological modelling, well log data, and geophysical data provides -
CONVENTIONAL OIL and GAS EXPLORATION Improving Cost Control and Efficiencies to Meet Today’S Exploration Challenges Table of Contents
CONVENTIONAL OIL AND GAS EXPLORATION Improving cost control and efficiencies to meet today’s exploration challenges Table of Contents INTRODUCTION ................................................................................................................ 1 Exploration impact of downturn ................................................................................... 1 Signs of recovery ............................................................................................................. 1 Exploration challenges ahead ...................................................................................... 2 REVISTING MATURE BASINS TO UNLOCK POTENTIAL ..................................................... 3 SOFTWARE TO OPTIMISE MATURE BASIN EXPLORATION ............................................... 4 FRONTIER AND UNDER-EXPLORED BASINS ....................................................................... 5 Reducing uncertainty and increasing chances of success ...................................... 6 SOFTWARE TO ENHANCE FRONTIER AND UNDER-EXPLORED BASIN EXPLORATION ... 7 MEETING DEEPWATER CHALLENGES ............................................................................... 8 Geopressure models for well planning ......................................................................... 8 UNDERSTANDING AND MINIMISING RISK IN HIGH PRESSURE AND HIGH TEMPERATURE ENVIRONMENTS ....................................................................................... 9 Improving prediction accuracy .................................................................................. -
Joint Flow–Seismic Inversion for Characterizing Fractured Reservoirs
Joint flow–seismic inversion for characterizing fractured reservoirs: theoretical approach and numer- ical modeling Peter K. Kang⇤, Yingcai Zheng, Xinding Fang, Rafal Wojcik, Dennis McLaughlin, Stephen Brown, Michael C. Fehler, Daniel R. Burns and Ruben Juanes, Massachusetts Institute of Technology SUMMARY ments into the seismic interpretation; on the other, improve the predictability of reservoir models by making joint use of seis- Traditionally, seismic interpretation is performed without any mic and flow data. account of the flow behavior. Here, we present a methodol- ogy to characterize fractured geologic media by integrating The basic tenet of our proposed framework is that there is a flow and seismic data. The key element of the proposed ap- strong dependence between fracture permeability (which drives proach is the identification of the intimate relation between the flow response) and fracture compliance (which drives the acoustic and flow responses of a fractured reservoir through seismic response). This connection has long been recognized the fracture compliance. By means of synthetic models, we (Pyrak-Nolte and Morris, 2000; Brown and Fang, 2012), and show that: (1) owing to the strong (but highly uncertain) de- recent works have pointed to the potential of exploiting that pendence of fracture permeability on fracture compliance, the connection (Vlastos et al., 2006; Zhang et al., 2009). Here, modeled flow response in a fractured reservoir is highly sensi- we propose a formal approach to improved characterization of tive to the geophysical interpretation; and (2) by incorporating fractured reservoirs, and improved reservoir flow predictions, flow data (well pressures and production curves) into the inver- by making joint use of the seismic and flow response. -
Extended Abstracts
CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 ISBN: 0-9810595-8 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 2 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts 19-22 August 2018 Dalhousie University Halifax, Nova Scotia, Canada Editors: Ricardo L. Silva, David E. Brown, and Paul J. Post ISBN: 0-9810595-8 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 3 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 4 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Sponsors The organizers of the Conjugate Margins Conference sincerely thank our sponsors, partners, and supporters who contributed financially and/or in-kind to the Conference’s success. Diamond $15,000+ Platinum $10,000 – $14,999 Gold $6,000 – $9,999 and In-Kind Bronze $2,000 – $3,999 and In-Kind Patrons and Supporters $1,000 – $1,999 and In-Kind Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 5 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 6 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Halifax 2018 Organization Organizing Committee David E. -
Fault Deformation, Seismic Amplitude and Unsupervised Fault Facies Analysis: Snøhvit Field, Barents Sea
Accepted Manuscript Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea Jennifer Cunningham, Nestor Cardozo, Christopher Townsend, David Iacopini, Gard Ole Wærum PII: S0191-8141(18)30328-6 DOI: 10.1016/j.jsg.2018.10.010 Reference: SG 3761 To appear in: Journal of Structural Geology Received Date: 10 June 2018 Revised Date: 11 October 2018 Accepted Date: 11 October 2018 Please cite this article as: Cunningham, J., Cardozo, N., Townsend, C., Iacopini, D., Wærum, G.O., Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea, Journal of Structural Geology (2018), doi: https://doi.org/10.1016/j.jsg.2018.10.010. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fault deformation, seismic amplitude and unsupervised fault facies 2 analysis: Snøhvit field, Barents Sea 3 Jennifer CUNNINGHAM * A, Nestor CARDOZO A, Christopher TOWNSEND A, David 4 IACOPINI B and Gard Ole WÆRUM C 5 A Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway 6 *[email protected] , +47 461 84 478 7 [email protected] , [email protected] 8 9 BGeology and Petroleum Geology, School of Geosciences, University of Aberdeen, Meston 10 Building, AB24 FX, UK 11 [email protected] 12 C Equinor ASA, Margrete Jørgensens Veg 4, 9406 Harstad, Norway 13 [email protected] 14 15 Keywords: faults, dip distortion, seismic attributes, seismic amplitude, fault facies. -
Annual Report 2019 Annual Report SM Approved by the SEG Council, 17 June 2020 Connecting the World of Applied Geophysics
2019 Annual Report 2019 Annual Report SM Approved by the SEG Council, 17 June 2020 Connecting the World of Applied Geophysics REPORTS OF Second vice Director at large REPORTS OF Books Editorial Distinguished GEOPHYSICS SEG BOARD OF president Maria A. Capello COMMITTEES Board Instructor Valentina Socco, editor DIRECTORS Manika Prasad 13 Mauricio Sacchi, chair Short Course 31 10 AGU–SEG 24 Adel El-Emam, chair President Director at large Collaboration 27 Geoscientists Robert R. Stewart Treasurer and Paul S. Cunningham Chi Zhang, cochair Committee on Without Borders® 5 Finance Committee 14 20 University and Distinguished Robert Merrill, chair Dan Ebrom and Lee Student Programs Lecturer 34 President-elect Bell Director at large Annual Meeting Joan Marie Blanco, Gerard Schuster, chair Rick Miller 11 David E. Lumley Steering chair 28 Global Advisory 7 15 Glenn Winters, chair 25 George Buzan, chair Vice president, 20 Emerging 36 Past president Publications Director at large Continuing Professionals Nancy House Sergey Fomel Ruben D. Martinez Annual Meeting Education International Gravity and 8 12 16 Technical Program Malcolm Lansley, chair Johannes Douma, chair Magnetics Dimitri Bevc, chair 25 30 Luise Sander, chair First vice president Chair of the Council Director at large Olga Nedorub, cochair 36 Alexander Mihai Gustavo Jose Carstens Kenneth M. Tubman 22 Development and EVOLVE Popovici 12 16 Production Michael C. Forrest, Health, Safety, 9 Audit Andrew Royle, chair interim chair Security, and Director at large Executive director Bob Brook, chair -
Reflection Seismic Method
GEOL463 ReflectionReflection SeismicSeismic MethodMethod Principles Data acquisition Processing Data visualization Interpretation* Linkage with other geophysical methods* Reading: Gluyas and Swarbrick, Section 2.3 Many books on reflection seismology (e.g., Telford et al.) SeismicSeismic MethodMethod TheThe onlyonly methodmethod givinggiving completecomplete picturepicture ofof thethe wholewhole areaarea GivesGives byby farfar thethe bestbest resolutionresolution amongamong otherother geophysicalgeophysical methodsmethods (gravity(gravity andand magnetic)magnetic) However, the resolution is still limited MapsMaps rockrock propertiesproperties relatedrelated toto porosityporosity andand permeability,permeability, andand presencepresence ofof gasgas andand fluidsfluids However, the links may still be non-unique RequiresRequires significantsignificant logisticallogistical efforteffort ReliesRelies onon extensiveextensive datadata processingprocessing andand inversioninversion GEOL463 SeismicSeismic ReflectionReflection ImagingImaging Acoustic (pressure) source is set off near the surface… Sound waves propagate in all directions from the source… This is the “ideal” 0.1-10% of the energy reflects of seismic imaging – flat surface and from subsurface contrasts… collocated sources This energy is recorded by and receivers surface or borehole “geophones”… In practice, multi-fold, offset recording is Times and amplitudes of these used, and zero-offset section is obtained by reflections are used to interpret extensive data the subsurface… processing -
Ocean Margin Drilling
Ocean Margin Drilling May 1980 NTIS order #PB80-198302 Library of Congress Catalog Card Number 80-600083 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock No. 052-003-00754-1 PREFACE This Technical Memorandum was prepared in response to a request from the Chairman and the Ranking Minority Member of the HUD-Independent Agencies Subcommittee of the Senate Appropriations Committee. The Committee requested that OTA conduct an evaluation of the Ocean Margin Drilling Program, a major new public-private cooperative research effort in marine geology proposed by the National Science Foundation. They were particularly interested in the scientific merits of the program and whether other, less costly alternatives could yield the same or greater scientific return. Because OTA already had a more general ongoing study of ocean research technology, the agency was able to respond quickly to this request. The Memorandum was prepared with the advice and assistance of a small panel of scientists plus a much broader group of scientists, engineers, petroleum company representatives, and others who submitted material for our use and reviewed our draft report. The study discusses the scientific merit of the program, possible alternatives to the present program plan, problems associated with technology development, aspects of petroleum company participation in the program, and government management considerations. There are also appendices including specific alternatives proposed by the OTA panel members and historical factors leading to the present plans. JOHN H. GIBBONS Director iii OTA Staff for Review of the Ocean Margin Drilling Program Robert Niblock, Ocean Program Manager Peter A.