Reflection Seismic Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2D Seismic Survey in Block AD- 10, Offshore Myanmar
2D Seismic Survey in Block AD- 10, Offshore Myanmar Initial Environmental Examination 02 December 2015 Environmental Resources Management www.erm.com The world’s leading sustainability consultancy 2D Seismic Survey in Block AD-10, Environmental Resources Management Offshore Myanmar ERM-Hong Kong, Limited 16/F, Berkshire House 25 Westlands Road Initial Environmental Examination Quarry Bay Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 Document Code: 0267094_IEE_Cover_AD10_EN.docx http://www.erm.com Client: Project No: Statoil Myanmar Private Limited 0267094 Summary: Date: 02 December 2015 Approved by: This document presents the Initial Environmental Examination (IEE) for 2D Seismic Survey in Block AD-10, as required under current Draft Environmental Impact Assessment Procedures Craig A. Reid Partner 1 Addressing MOECAF Comments, Final for MOGE RS CAR CAR 02/12/2015 0 Draft Final RS JNG CAR 31/08/2015 Revision Description By Checked Approved Date Distribution Internal Public Confidential CONTENTS 1 EXECUTIVE SUMMARY 1-1 1.1 PURPOSE AND EXTENT OF THE IEE REPORT 1-1 1.2 SUMMARY OF THE ACTIVITIES UNDERTAKEN DURING THE IEE STUDY 1-2 1.3 PROJECT ALTERNATIVES 1-2 1.4 DESCRIPTION OF THE ENVIRONMENT TO BE AFFECTED BY THE PROJECT 1-4 1.5 SIGNIFICANT ENVIRONMENTAL IMPACTS 1-5 1.6 THE PUBLIC CONSULTATION AND PARTICIPATION PROCESS 1-6 1.7 SUMMARY OF THE EMP 1-7 1.8 CONCLUSIONS AND RECOMMENDATIONS OF THE IEE REPORT 1-8 2 INTRODUCTION 2-1 2.1 PROJECT OVERVIEW 2-1 2.2 PROJECT PROPONENT 2-1 2.3 THIS INITIAL ENVIRONMENTAL EVALUATION (IEE) -
Imaging Through Gas Clouds: a Case History in the Gulf of Mexico S
Imaging Through Gas Clouds: A Case History In The Gulf Of Mexico S. Knapp1, N. Payne1, and T. Johns2, Seitel Data1, Houston, Texas: WesternGeco2, Houston, Texas Summary Results from the worlds largest 3D four component OBC seismic survey will be presented. Located in the West Cameron area, offshore Gulf of Mexico, the survey operation totaled over 1000 square kilometers and covered more than 46 OCS blocks. The area contains numerous gas invaded zones and shallow gas anomalies that disturb the image on conventional 3D seismic, which only records compressional data. Converted shear wave data allows images to be obtained that are unobstructed by the gas and/or fluids. This reduces the risk for interpretation and subsequent appraisal and development drilling in complex areas which are clearly petroleum rich. In addition, rock properties can be uniquely determined from the compressional and shear data, allowing for improved reservoir characterization and lithologic prediction. Data acquisition and processing of multicomponent 3D datasets involves both similarities and differences when compared to conventional techniques. Processing for the compressional data is the same as for a conventional OBC survey, however, asymmetric raypaths for the converted waves and the resultant effects on fold-offset-azimuth distribution, binning and velocity determination require radically different processing methodologies. These issues together with methods for determining the optimal parameters of the Vp/Vs ratio (γ) will be discussed. Finally, images from both the compressional (P and Z components summed) and converted shear waves will be shown to illuminate details that were not present on previous 3D datasets. Introduction Multicomponent 3D surveys have become one of the leading areas where state of the art technology is being applied to areas where the exploitation potential has not been fulfilled due to difficulties in obtaining an interpretable seismic image (MacLeod et al 1999, Rognoe et al 1999). -
ADUA Azerbaijan 2D-3D Seismic Survey Environmental Impact
Environmental Impact Assessment (EIA) for 2D-3D Doc. No. seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan Valid from Rev. no. 0 01.03.2019 Environmental Impact Assessment (EIA) for 2D-3D seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan March 2019 Environmental Impact Assessment (EIA) for 2D-3D seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan Valid from 01.03.2019 Rev. no. 0 Table of contents Acronyms ...................................................................................................................................................... 10 Executive Summary ...................................................................................................................................... 13 Regulatory Framework .................................................................................................................................... 14 Project Description .......................................................................................................................................... 17 Description of the Environmental and Social Baseline ................................................................................... 18 Impact Assessment and Mitigation ................................................................................................................. 22 Environmental Management Plan .................................................................................................................. -
Types of Seismic Energy Sources for Petroleum Exploration in Desert, Dry-Land, Swamp and Marine Environments in Nigeria and Other Sub- Saharan Africa
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Types of Seismic Energy Sources for Petroleum Exploration in Desert, Dry-Land, Swamp and Marine Environments in Nigeria and Other Sub- Saharan Africa Madu Anthony Joseph Chinenyeze Department of Geology, College of Physical And Applied Sciences, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria Abstract: The various seismic energy sources used for petroleum exploration in Nigeria (Niger Delta, Benue Trough, Chad Basin) and sub-Saharan Africa (Niger Republic, Sudan, Ethiopia inclusive) have been undergoing improvement over the years. Explosive source usually Dynamite, Airgun, Thumper/Weight Drop, and Vibrators are remarkable seismic energy sources today with frequencies for primary seismic production, bandwidth 10Hz – 75Hz. These sources contribute to higher S/N ratio and greater bandwidth. The spectral analysis of shot records from the afore-mentioned energy sources confirm their corresponding suitability, effectiveness, and adequacy for wave propagation into the ground, until it encountered an impedance in the subsurface. The latter condition results in reflections and refractions which are picked by the receivers or sensors (geophones or hydrophones). The spectral analyses from these selected sources reveal comparable range of signal frequencies. The Thumpers or vibrator shots at any given shot point location SP, is repeated severally for the purpose of enhancement and then summed or stacked. This is also called vibrator sweep, as it vibrates repeatedly according to specification of program issue. In the repetition of frequency sweep, amplitude increases are optimized to a specific level within the same duration. -
UNITED STATES DEPARTMENT of the INTERIOR BUREAU of OCEAN ENERGY MANAGEMENT SITE-SPECIFIC ENVIRONMENTAL ASSESSMENT GEOLOGICAL &Am
GEOPHYSICAL EXPLORATION FOR MINERAL RESOURCES SEA NO. L19-009 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT GULF OF MEXICO OCS REGION NEW ORLEANS, LOUISIANA SITE-SPECIFIC ENVIRONMENTAL ASSESSMENT OF GEOLOGICAL & GEOPHYSICAL SURVEY APPLICATION NO. L19-009 FOR SHELL OFFSHORE INC. April 2, 2019 RELATED ENVIRONMENTAL DOCUMENTS GulfofMexico OCS Proposed Geological and Geophysical Activities Westem, Central, and Eastem Planning Areas Final Programmatic Environmental Impact Statement (OCS EIS/EA BOEM 2017-051) GulfofMexico OCS Oil and Gas Lease Sales: 2017-2022 GulfofMexico Lease Sales 249, 250, 251, 252, 253, 254, 256, 257, 259, and 261 Final Environmental Impact Statement (OCS EIS/EA BOEM 2017-009) Gulf ofMexico OCS Lease Sale Final Supplemental Environmental Impact Statement 2018 (OCS EIS/EA BOEM 2017-074) FINDING OF NO SIGNIFICANT IMPACT (FONSI) The Bureau of Ocean Energy Management (BOEM) has prepared a Site-Specific Environmental Assessment (SEA) (No. L19-009) complying with the National Environmental Policy Act (NEPA). NEPA regulations under the Council on Environmental Quality (CEQ) (40 CFR § 150 E3 and § 1508.9), die United States Department of the Interior (DOI) NEPA implementing regulations (43 CFR § 46), and BOEM policy require an evaluation of proposed major federal actions, which under BOEM jurisdiction includes approving a plan for oil and gas exploration or development activity on the Outer Continental Shelf (OCS). NEPA regulation 40 CFR § 1508.27(b) requires significance to be evaluated in terms of -
Seismic Reflection and Refraction Methods
Seismic Reflection and Refraction Methods A. K. Chaubey National Institute of Oceanography, Dona Paula, Goa-403 004. [email protected] Introduction and radar systems. Whereas, in seismic refraction Seismic reflection and refraction is the principal method, principal portion of the wave-path is along the seismic method by which the petroleum industry explores interface between the two layers and hence hydrocarbon-trapping structures in sedimentary basins. approximately horizontal. The travel times of the Its extension to deep crustal studies began in the 1960s, refracted wave paths are then interpreted in terms of the and since the late 1970s these methods have become depths to subsurface interfaces and the speeds at which the principal techniques for detailed studies of the deep wave travels through the subsurface within each layer. crust. These methods are by far the most important For both types of paths the travel time depends upon the geophysical methods and the predominance of these physical property, called elastic parameters, of the methods over other geophysical methods is due to layered Earth and the attitudes of the beds. The various factors such as the higher accuracy, higher objective of the seismic exploration is to deduce resolution and greater penetration. Further, the information about such beds especially about their importance of the seismic methods lies in the fact that attitudes from the observed arrival times and from the data, if properly handled, yield an almost unique and variations in amplitude, frequency and wave form. unambiguous interpretation. These methods utilize the principle of elastic waves travelling with different Both the seismic techniques have specific velocities in different layer formations of the Earth. -
Paper 4: Seismic Methods for Determining Earthquake Source
Paper 4: Seismic methods for determining earthquake source parameters and lithospheric structure WALTER D. MOONEY U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, California 94025 For referring to this paper: Mooney, W. D., 1989, Seismic methods for determining earthquake source parameters and lithospheric structure, in Pakiser, L. C., and Mooney, W. D., Geophysical framework of the continental United States: Boulder, Colorado, Geological Society of America Memoir 172. ABSTRACT The seismologic methods most commonly used in studies of earthquakes and the structure of the continental lithosphere are reviewed in three main sections: earthquake source parameter determinations, the determination of earth structure using natural sources, and controlled-source seismology. The emphasis in each section is on a description of data, the principles behind the analysis techniques, and the assumptions and uncertainties in interpretation. Rather than focusing on future directions in seismology, the goal here is to summarize past and current practice as a companion to the review papers in this volume. Reliable earthquake hypocenters and focal mechanisms require seismograph locations with a broad distribution in azimuth and distance from the earthquakes; a recording within one focal depth of the epicenter provides excellent hypocentral depth control. For earthquakes of magnitude greater than 4.5, waveform modeling methods may be used to determine source parameters. The seismic moment tensor provides the most complete and accurate measure of earthquake source parameters, and offers a dynamic picture of the faulting process. Methods for determining the Earth's structure from natural sources exist for local, regional, and teleseismic sources. One-dimensional models of structure are obtained from body and surface waves using both forward and inverse modeling. -
Source, Scattering and Attenuation Effects on High
SOURCE, SCATTERING AND ATTENUATION EFFECTS ON HIGH FREQUENCY SEISMIC vlAVES by BERNARD ALFRED CHOUET Electrical Engineer Federal Institute of Technology Lausanne, Switzerland (1968) S.M., Aeronautics and Astronautics, M.I.T. (1972) S.M., Earth and Planetary Sciences, M.I.T. (1973) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY Sept.ember, 1976 Signature of the Author Department: of Earth and Planetary Sciences, September 1976 Certified by ................................... Thesis Supervisor Accepted by ..............-.................... Chairman, Departmental Committee on Graduate Students ii SOURCE, SCATTERING AND ATTENUATION EFFECTS ON HIGH FREQUENCY SEISMIC WAVES by BERNARD ALFRED CHOUET Submitted to the Department of Earth and Planetary Sciences on August 12, 1976 in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT High frequency coda waves from small local earthquakes are interpreted as backscattering waves from numerous hete- rogeneities distributed uniformly in the earth's crust. Two extreme models of the wave medium that account for the ob- servations on the coda are proposed. In the first model we use a simple statistical approach and consider the back- scattering waves as a superposition of independent singly scattered wavelets. The basic assumption underlying this single backscattering model is that the scattering is a weak process so that the loss of seismic energy as well as the multiple scattering can be neglected. In the second model the seismic energy transfer is considered as a diffusion process. These two approaches lead to similar formulas that allow an accurate separation of the effect of earth- quake source from the effects of scattering and attenuation on the coda spectra. -
The Story of Wolfspar®, BP's Low-Frequency Marine Seismic Source
The story of Wolfspar®, BP’s low-frequency marine seismic source; or, “Sometimes the ‘brute force’ approach to a problem can work”! Joe Dellinger, Drew Brenders, John Etgen, Scott Michell In exploration seismology we image the Earth’s interior using reflected sound waves. We do this using an algorithm called “migration”, which converts the reflected sound waves recorded at the Earth’s surface into an image of subsurface structures. There is a catch-22 problem in doing this, however. For migration to work we need a reasonably good numerical model of the sound speeds in the Earth. We often find ourselves trying to guess what those sound speeds may be. If our guess is not too far wrong, it allows us to produce a degraded image, which we can then use to update our subsurface sound speed model and try migrating again, etc. Sometimes, however, we just can’t get this process off the ground. The standard response when confronted with such difficulties is to construct ever more sophisticated imaging / inversion algorithms. The holy grail would be an algorithm that could produce a good image with minimal to no human intervention or a-priori information required. Some of the best minds in the industry have been working on developing such algorithms for decades now, and while there has been some success, large areas of the US Gulf of Mexico have remained intractable. That’s a prize of many billions of dollars to the US economy that we still cannot access. It is well known that “the lower the frequency, the easier the problem becomes”. -
Extended Abstracts
CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 ISBN: 0-9810595-8 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 2 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Extended Abstracts 19-22 August 2018 Dalhousie University Halifax, Nova Scotia, Canada Editors: Ricardo L. Silva, David E. Brown, and Paul J. Post ISBN: 0-9810595-8 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 3 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 4 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Sponsors The organizers of the Conjugate Margins Conference sincerely thank our sponsors, partners, and supporters who contributed financially and/or in-kind to the Conference’s success. Diamond $15,000+ Platinum $10,000 – $14,999 Gold $6,000 – $9,999 and In-Kind Bronze $2,000 – $3,999 and In-Kind Patrons and Supporters $1,000 – $1,999 and In-Kind Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 5 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge 6 Dalhousie University, Halifax, Nova Scotia, August 19–22, 2018 CONJUGATE MARGINS CONFERENCE 2018 Celebrating 10 years of the CMC: Pushing the Boundaries of Knowledge Halifax 2018 Organization Organizing Committee David E. -
Seismic Sources
GEOL 335.3 Seismic Sources Seismic sources Requirements; Principles; Onshore, offshore. Recorders Digitals recorders; Analog-to-Digital (A/D) converters. Reading: Reynolds, Section 4.5 Telford et al., Section 4.5 GEOL 335.3 Seismic Source Localized region within which a sudden increase in elastic energy leads to rapid stressing of the surrounding medium. Most seismic sources preferentially generate S-waves Easier to generate (pressure pulse); Easier to record and process (earlier, more impulsive arrivals). Requirements Broadest possible frequency spectrum; Sufficient energy; Repeatability; Safety - environmental and personnel; Minimal cost; Minimal coherent (source-induced) noise. GEOL 335.3 Land Source Explosives – chemical base Steep pressure pulse. Shotguns, rifles, blasting caps; …bombs, nuclear blasts… Surface (mechanical) Weight drop, hammer; Piezoelectric borehole sources (ultrasound ); Continuous signal Vibroseis (continuously varying frequency, 10-300 Hz) Mini-Sosie (multiple impact); Combination with Vibroseis (Swept Impact Seismic Technique, SIST) Drill bit ('Seismic While Drilling’); sparkers, ...truck spark plugs. GEOL 335.3 Mechanism of generation of seismic waves by explosion Stage 1: Detonation. Start of explosion - electric pulse ignites the blasting cap placed inside the charge. The pulse is also transmitted to recorder to set t = 0; Disturbance propagates at ~ 6-7 km/s (supersonic velocity); surrounding medium is unaffected; The explosive becomes hot gas of the same density as the solid - hence its pressure is very high (several GPa) Stage 2: Pressure pulse spreads out spherically as an inelastic shock wave Stresses >> material strength; Extensive cracking in the vicinity of the charge. Stage 3: At some distance, the stress equals the elastic limit Pressure pulse keeps spreading out spherically as an elastic wave. -
Fault Deformation, Seismic Amplitude and Unsupervised Fault Facies Analysis: Snøhvit Field, Barents Sea
Accepted Manuscript Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea Jennifer Cunningham, Nestor Cardozo, Christopher Townsend, David Iacopini, Gard Ole Wærum PII: S0191-8141(18)30328-6 DOI: 10.1016/j.jsg.2018.10.010 Reference: SG 3761 To appear in: Journal of Structural Geology Received Date: 10 June 2018 Revised Date: 11 October 2018 Accepted Date: 11 October 2018 Please cite this article as: Cunningham, J., Cardozo, N., Townsend, C., Iacopini, D., Wærum, G.O., Fault deformation, seismic amplitude and unsupervised fault facies analysis: Snøhvit Field, Barents Sea, Journal of Structural Geology (2018), doi: https://doi.org/10.1016/j.jsg.2018.10.010. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fault deformation, seismic amplitude and unsupervised fault facies 2 analysis: Snøhvit field, Barents Sea 3 Jennifer CUNNINGHAM * A, Nestor CARDOZO A, Christopher TOWNSEND A, David 4 IACOPINI B and Gard Ole WÆRUM C 5 A Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway 6 *[email protected] , +47 461 84 478 7 [email protected] , [email protected] 8 9 BGeology and Petroleum Geology, School of Geosciences, University of Aberdeen, Meston 10 Building, AB24 FX, UK 11 [email protected] 12 C Equinor ASA, Margrete Jørgensens Veg 4, 9406 Harstad, Norway 13 [email protected] 14 15 Keywords: faults, dip distortion, seismic attributes, seismic amplitude, fault facies.