ADUA Azerbaijan 2D-3D Seismic Survey Environmental Impact

Total Page:16

File Type:pdf, Size:1020Kb

ADUA Azerbaijan 2D-3D Seismic Survey Environmental Impact Environmental Impact Assessment (EIA) for 2D-3D Doc. No. seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan Valid from Rev. no. 0 01.03.2019 Environmental Impact Assessment (EIA) for 2D-3D seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan March 2019 Environmental Impact Assessment (EIA) for 2D-3D seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan Valid from 01.03.2019 Rev. no. 0 Table of contents Acronyms ...................................................................................................................................................... 10 Executive Summary ...................................................................................................................................... 13 Regulatory Framework .................................................................................................................................... 14 Project Description .......................................................................................................................................... 17 Description of the Environmental and Social Baseline ................................................................................... 18 Impact Assessment and Mitigation ................................................................................................................. 22 Environmental Management Plan ................................................................................................................... 25 1 Introduction ................................................................................................................................... 28 1.1 Background ..................................................................................................................................... 28 1.2 The Project...................................................................................................................................... 29 1.3 Purpose of this report...................................................................................................................... 30 1.4 Presentation of the Project Proponent ............................................................................................ 30 1.5 Presentation of the consultancy in charge of the EIA ..................................................................... 31 1.5.1 ERM ................................................................................................................................................ 31 1.5.2 Synergetics ..................................................................................................................................... 31 1.6 Scope of the Seismic survey EIA .................................................................................................... 32 1.7 Report Structure.............................................................................................................................. 32 2 Regulatory Framework ................................................................................................................. 34 2.1 Introduction ..................................................................................................................................... 34 2.2 National Authorities ......................................................................................................................... 34 2.3 Production Sharing Agreement (PSA) ............................................................................................ 35 2.4 National Environmental legislation .................................................................................................. 36 2.4.1 National EIA Guidance.................................................................................................................... 46 2.5 Segment and regional Standards ................................................................................................... 47 2.5.1 European Union .............................................................................................................................. 47 2.5.2 Environment for Europe .................................................................................................................. 48 2.6 International and Regional Environmental Conventions ................................................................. 48 2.7 International Petroleum Industry Standards and Practices ............................................................. 54 3 Project Description ....................................................................................................................... 55 3.1 Introduction ..................................................................................................................................... 55 3.2 Survey schedule and period ........................................................................................................... 56 3.2.1 Description of the seismic acquisition survey ................................................................................. 57 3.2.2 Principles of acoustic signal emission............................................................................................. 57 3.2.3 Capturing the acoustic signal / principles of a 3D seismic survey .................................................. 57 3.2.4 Difference between 2D and 3D seismic acquisition ........................................................................ 58 Page 2 of 224 Classification: Open Status: Final www.equinor.com Environmental Impact Assessment (EIA) for 2D-3D seismic survey in the Ashrafi-Dan Ulduzu-Aypara (ADUA) Exploration area, Azerbaijan Valid from 01.03.2019 Rev. no. 0 3.2.5 Complementary survey techniques................................................................................................. 59 3.2.5.1 Magnetic and Gravity measurements ............................................................................................. 59 3.2.5.2 Marine Current Meter and Echo Sounder ....................................................................................... 60 3.3 Seismic survey of Azerbaijan Ashrafi-Dan Ulduzu-Aypara exploration area .................................. 61 3.3.1 Survey fleet ..................................................................................................................................... 61 3.3.1.1 Current status of selection .............................................................................................................. 61 3.3.1.2 Seismic fleet.................................................................................................................................... 61 3.3.1.3 Guard vessel ................................................................................................................................... 62 3.3.1.4 Support/Supply vessel .................................................................................................................... 63 3.3.2 Operational details .......................................................................................................................... 64 3.4 Emissions, discharge, waste and handling of hazardous materials................................................ 66 3.4.1 Atmospheric emissions ................................................................................................................... 66 3.4.2 Liquid discharge .............................................................................................................................. 66 3.4.3 Non-hazardous and hazardous Solid waste ................................................................................... 69 3.4.3.1 Non-hazardous solid waste............................................................................................................. 69 3.4.3.2 Solid Hazardous waste ................................................................................................................... 69 3.5 HSES procedures ........................................................................................................................... 71 4 Environmental and Social Baseline ............................................................................................ 72 4.1 Introduction ..................................................................................................................................... 72 4.1.1 Project Study Area and regional setting.......................................................................................... 72 4.1.2 Sources of information .................................................................................................................... 73 4.2 Physical Environment ..................................................................................................................... 74 4.2.1 Geographical setting ....................................................................................................................... 74 4.2.2 Meteorological conditions ............................................................................................................... 75 4.2.2.1 Air temperature, precipitation and humidity .................................................................................... 76 4.2.2.2 Winds .............................................................................................................................................. 77 4.2.2.3 Specific meteorological
Recommended publications
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • 2D Seismic Survey in Block AD- 10, Offshore Myanmar
    2D Seismic Survey in Block AD- 10, Offshore Myanmar Initial Environmental Examination 02 December 2015 Environmental Resources Management www.erm.com The world’s leading sustainability consultancy 2D Seismic Survey in Block AD-10, Environmental Resources Management Offshore Myanmar ERM-Hong Kong, Limited 16/F, Berkshire House 25 Westlands Road Initial Environmental Examination Quarry Bay Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 Document Code: 0267094_IEE_Cover_AD10_EN.docx http://www.erm.com Client: Project No: Statoil Myanmar Private Limited 0267094 Summary: Date: 02 December 2015 Approved by: This document presents the Initial Environmental Examination (IEE) for 2D Seismic Survey in Block AD-10, as required under current Draft Environmental Impact Assessment Procedures Craig A. Reid Partner 1 Addressing MOECAF Comments, Final for MOGE RS CAR CAR 02/12/2015 0 Draft Final RS JNG CAR 31/08/2015 Revision Description By Checked Approved Date Distribution Internal Public Confidential CONTENTS 1 EXECUTIVE SUMMARY 1-1 1.1 PURPOSE AND EXTENT OF THE IEE REPORT 1-1 1.2 SUMMARY OF THE ACTIVITIES UNDERTAKEN DURING THE IEE STUDY 1-2 1.3 PROJECT ALTERNATIVES 1-2 1.4 DESCRIPTION OF THE ENVIRONMENT TO BE AFFECTED BY THE PROJECT 1-4 1.5 SIGNIFICANT ENVIRONMENTAL IMPACTS 1-5 1.6 THE PUBLIC CONSULTATION AND PARTICIPATION PROCESS 1-6 1.7 SUMMARY OF THE EMP 1-7 1.8 CONCLUSIONS AND RECOMMENDATIONS OF THE IEE REPORT 1-8 2 INTRODUCTION 2-1 2.1 PROJECT OVERVIEW 2-1 2.2 PROJECT PROPONENT 2-1 2.3 THIS INITIAL ENVIRONMENTAL EVALUATION (IEE)
    [Show full text]
  • Types of Seismic Energy Sources for Petroleum Exploration in Desert, Dry-Land, Swamp and Marine Environments in Nigeria and Other Sub- Saharan Africa
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Types of Seismic Energy Sources for Petroleum Exploration in Desert, Dry-Land, Swamp and Marine Environments in Nigeria and Other Sub- Saharan Africa Madu Anthony Joseph Chinenyeze Department of Geology, College of Physical And Applied Sciences, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria Abstract: The various seismic energy sources used for petroleum exploration in Nigeria (Niger Delta, Benue Trough, Chad Basin) and sub-Saharan Africa (Niger Republic, Sudan, Ethiopia inclusive) have been undergoing improvement over the years. Explosive source usually Dynamite, Airgun, Thumper/Weight Drop, and Vibrators are remarkable seismic energy sources today with frequencies for primary seismic production, bandwidth 10Hz – 75Hz. These sources contribute to higher S/N ratio and greater bandwidth. The spectral analysis of shot records from the afore-mentioned energy sources confirm their corresponding suitability, effectiveness, and adequacy for wave propagation into the ground, until it encountered an impedance in the subsurface. The latter condition results in reflections and refractions which are picked by the receivers or sensors (geophones or hydrophones). The spectral analyses from these selected sources reveal comparable range of signal frequencies. The Thumpers or vibrator shots at any given shot point location SP, is repeated severally for the purpose of enhancement and then summed or stacked. This is also called vibrator sweep, as it vibrates repeatedly according to specification of program issue. In the repetition of frequency sweep, amplitude increases are optimized to a specific level within the same duration.
    [Show full text]
  • UNITED STATES DEPARTMENT of the INTERIOR BUREAU of OCEAN ENERGY MANAGEMENT SITE-SPECIFIC ENVIRONMENTAL ASSESSMENT GEOLOGICAL &Am
    GEOPHYSICAL EXPLORATION FOR MINERAL RESOURCES SEA NO. L19-009 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT GULF OF MEXICO OCS REGION NEW ORLEANS, LOUISIANA SITE-SPECIFIC ENVIRONMENTAL ASSESSMENT OF GEOLOGICAL & GEOPHYSICAL SURVEY APPLICATION NO. L19-009 FOR SHELL OFFSHORE INC. April 2, 2019 RELATED ENVIRONMENTAL DOCUMENTS GulfofMexico OCS Proposed Geological and Geophysical Activities Westem, Central, and Eastem Planning Areas Final Programmatic Environmental Impact Statement (OCS EIS/EA BOEM 2017-051) GulfofMexico OCS Oil and Gas Lease Sales: 2017-2022 GulfofMexico Lease Sales 249, 250, 251, 252, 253, 254, 256, 257, 259, and 261 Final Environmental Impact Statement (OCS EIS/EA BOEM 2017-009) Gulf ofMexico OCS Lease Sale Final Supplemental Environmental Impact Statement 2018 (OCS EIS/EA BOEM 2017-074) FINDING OF NO SIGNIFICANT IMPACT (FONSI) The Bureau of Ocean Energy Management (BOEM) has prepared a Site-Specific Environmental Assessment (SEA) (No. L19-009) complying with the National Environmental Policy Act (NEPA). NEPA regulations under the Council on Environmental Quality (CEQ) (40 CFR § 150 E3 and § 1508.9), die United States Department of the Interior (DOI) NEPA implementing regulations (43 CFR § 46), and BOEM policy require an evaluation of proposed major federal actions, which under BOEM jurisdiction includes approving a plan for oil and gas exploration or development activity on the Outer Continental Shelf (OCS). NEPA regulation 40 CFR § 1508.27(b) requires significance to be evaluated in terms of
    [Show full text]
  • Paper 4: Seismic Methods for Determining Earthquake Source
    Paper 4: Seismic methods for determining earthquake source parameters and lithospheric structure WALTER D. MOONEY U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, California 94025 For referring to this paper: Mooney, W. D., 1989, Seismic methods for determining earthquake source parameters and lithospheric structure, in Pakiser, L. C., and Mooney, W. D., Geophysical framework of the continental United States: Boulder, Colorado, Geological Society of America Memoir 172. ABSTRACT The seismologic methods most commonly used in studies of earthquakes and the structure of the continental lithosphere are reviewed in three main sections: earthquake source parameter determinations, the determination of earth structure using natural sources, and controlled-source seismology. The emphasis in each section is on a description of data, the principles behind the analysis techniques, and the assumptions and uncertainties in interpretation. Rather than focusing on future directions in seismology, the goal here is to summarize past and current practice as a companion to the review papers in this volume. Reliable earthquake hypocenters and focal mechanisms require seismograph locations with a broad distribution in azimuth and distance from the earthquakes; a recording within one focal depth of the epicenter provides excellent hypocentral depth control. For earthquakes of magnitude greater than 4.5, waveform modeling methods may be used to determine source parameters. The seismic moment tensor provides the most complete and accurate measure of earthquake source parameters, and offers a dynamic picture of the faulting process. Methods for determining the Earth's structure from natural sources exist for local, regional, and teleseismic sources. One-dimensional models of structure are obtained from body and surface waves using both forward and inverse modeling.
    [Show full text]
  • Source, Scattering and Attenuation Effects on High
    SOURCE, SCATTERING AND ATTENUATION EFFECTS ON HIGH FREQUENCY SEISMIC vlAVES by BERNARD ALFRED CHOUET Electrical Engineer Federal Institute of Technology Lausanne, Switzerland (1968) S.M., Aeronautics and Astronautics, M.I.T. (1972) S.M., Earth and Planetary Sciences, M.I.T. (1973) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY Sept.ember, 1976 Signature of the Author Department: of Earth and Planetary Sciences, September 1976 Certified by ................................... Thesis Supervisor Accepted by ..............-.................... Chairman, Departmental Committee on Graduate Students ii SOURCE, SCATTERING AND ATTENUATION EFFECTS ON HIGH FREQUENCY SEISMIC WAVES by BERNARD ALFRED CHOUET Submitted to the Department of Earth and Planetary Sciences on August 12, 1976 in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT High frequency coda waves from small local earthquakes are interpreted as backscattering waves from numerous hete- rogeneities distributed uniformly in the earth's crust. Two extreme models of the wave medium that account for the ob- servations on the coda are proposed. In the first model we use a simple statistical approach and consider the back- scattering waves as a superposition of independent singly scattered wavelets. The basic assumption underlying this single backscattering model is that the scattering is a weak process so that the loss of seismic energy as well as the multiple scattering can be neglected. In the second model the seismic energy transfer is considered as a diffusion process. These two approaches lead to similar formulas that allow an accurate separation of the effect of earth- quake source from the effects of scattering and attenuation on the coda spectra.
    [Show full text]
  • The Caspian Sea Encyclopedia
    Encyclopedia of Seas The Caspian Sea Encyclopedia Bearbeitet von Igor S. Zonn, Aleksey N Kosarev, Michael H. Glantz, Andrey G. Kostianoy 1. Auflage 2010. Buch. xi, 525 S. Hardcover ISBN 978 3 642 11523 3 Format (B x L): 17,8 x 25,4 cm Gewicht: 967 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Anthropogeographie > Regionalgeographie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. B Babol – a city located 25 km from the Caspian Sea on the east–west road connecting the coastal provinces of Gilan and Mazandaran. Founded in the sixteenth century, it was once a heavy-duty river port. Since the early nineteenth century, it has been one of the major cities in the province. Ruins of some ancient buildings are found here. Food and cotton ginning factories are also located here. The population is over 283 thou as of 2006. Babol – a river flowing into the Caspian Sea near Babolsar. It originates in the Savadhuk Mountains and is one of the major rivers in Iran. Its watershed is 1,630 km2, its length is 78 km, and its width is about 50–60 m at its mouth down to 100 m upstream. Its average discharge is 16 m3/s. The river receives abundant water from snowmelt and rainfall.
    [Show full text]
  • III Cild, № 1 2017
    III cild, № 1 2017 Təsisçi: Azərbaycan Milli Elmlər Akademiyası Gənc Alim və Mütəxəssislər Şurası Məsləhət Şurasının sədri: AMEA-nın prezidenti, akademik Akif Əlizadə Redaktor: AMEA Gənc Alim və Mütəxəssislər Şurasının sədri, fizika üzrə fəlsəfə doktoru, dosent Famin Salmanov Məsləhət Şurası: Akademik İbrahim Quliyev – AMEA-nın vitse prezidenti Akademik Dilqəm Tağıyev – AMEA-nın vitse prezidenti Akademik İsa Həbibbəyli – AMEA-nın vitse prezidenti Akademik Tofiq Nağıyev – AMEA-nın vitse prezidenti Akademik Əhliman Əmiraslanov – AMEA-nın Biologiya və Tibb Elmləri Bölməsinin akademik-katibi Akademik Fəxrəddin Qədirov – AMEA-nın Yer Elmləri Bölməsinin akademik-katibi Akademik Nazim Məmmədov – AMEA-nın Fizika-Riyaziyyat və Texnika Elmləri Bölməsinin akademik- katibi Akademik Teymur Kərimli – AMEA-nın Humanitar Elmlər Bölməsinin akademik-katibi Akademik Nərgiz Axundova – AMEA-nın İctimai Elmlər Bölməsinin akademik-katibi Redaksiya Şurası: Yer elmləri üzrə fəlsəfə doktoru, dosent Orxan Abbasov, kimya üzrə fəlsəfə doktoru Əfsun Sucayev, riyaziyyat üzrə fəlsəfə doktoru, dosent Famil Seyfullayev, filologiya üzrə fəlsəfə doktoru, dosent Eşqanə Babayeva, filologiya üzrə fəlsəfə doktoru Nəzmiyyə Yigitoğlu, biologiya üzrə fəlsəfə doktoru Səbinə Bünyadova, tarix üzrə fəlsəfə doktoru, dosent Bəxtiyar Cəlilov Məsul katib: kimya üzrə fəlsəfə doktoru, dosent Faiq Məmmədov AMEA Gənc Alim və Mütəxəssislər Şurasının “Gənc Tədqiqatçı” adlı Elmi-praktiki jurnalı AMEA Rəyasət Heyətinin 12.03.2015 tarixli 8/4 saylı Qərarı ilə nəşr edilir. “Gənc tədqiqatçı” jur-
    [Show full text]
  • Golden Eagle - the Caspian Odyssey
    Journey Itinerary Golden Eagle - The Caspian Odyssey Days Eastbound Countries Distance Activity level 16 Yerevan to Armenia + Georgia + Azerbaijan + Turkmenistan + 7865 Almaty Uzbekistan + Kazakhstan Explore the countries on both the eastern and western shores of the Caspian Sea – Armenia, Georgia, Azerbaijan, Turkmenistan, Uzbekistan and Kazakhstan. With their location at the crossroads of trade, religion, language and the arts, these countries are home to fascinating modern cultures as well as some of the world’s most ancient and timeless architecture. Sundowners Overland - Golden Eagle - The Caspian Odyssey Page 1 of 9 Itinerary Day 1: Yerevan Upon arrival at Yerevan International Airport you will be met and transferred to the centrally-located Armenia Marriott Hotel (or similar), where we stay for one night. Tonight we enjoy a welcome dinner at our hotel, whilst you meet your fellow travellers and look forward to the journey across six countries of the South Caucasus region and Central Asia. Why not extend your stay in Yerevan with additional nights before the tour to explore more of the city and region at your leisure? Meals - Dinner Day 2: Yerevan The Yerevan skyline is dominated by Mount Ararat in nearby Turkey, with its snow covered peak towering in the distance. Yerevan has a rich history and was occupied as early as 6,000 BC. The fortress of Erebuni was erected there in the 8th century BC. Seized by a succession of conquerors, the city later passed back and forth between the Turks and the Persians until 1827, when it was taken by Russia. It became the capital of Soviet Armenia in 1920 and following the demise of the Soviet Union, the capital of the new nation of Armenia.
    [Show full text]
  • The Story of Wolfspar®, BP's Low-Frequency Marine Seismic Source
    The story of Wolfspar®, BP’s low-frequency marine seismic source; or, “Sometimes the ‘brute force’ approach to a problem can work”! Joe Dellinger, Drew Brenders, John Etgen, Scott Michell In exploration seismology we image the Earth’s interior using reflected sound waves. We do this using an algorithm called “migration”, which converts the reflected sound waves recorded at the Earth’s surface into an image of subsurface structures. There is a catch-22 problem in doing this, however. For migration to work we need a reasonably good numerical model of the sound speeds in the Earth. We often find ourselves trying to guess what those sound speeds may be. If our guess is not too far wrong, it allows us to produce a degraded image, which we can then use to update our subsurface sound speed model and try migrating again, etc. Sometimes, however, we just can’t get this process off the ground. The standard response when confronted with such difficulties is to construct ever more sophisticated imaging / inversion algorithms. The holy grail would be an algorithm that could produce a good image with minimal to no human intervention or a-priori information required. Some of the best minds in the industry have been working on developing such algorithms for decades now, and while there has been some success, large areas of the US Gulf of Mexico have remained intractable. That’s a prize of many billions of dollars to the US economy that we still cannot access. It is well known that “the lower the frequency, the easier the problem becomes”.
    [Show full text]
  • Seismic Sources
    GEOL 335.3 Seismic Sources Seismic sources Requirements; Principles; Onshore, offshore. Recorders Digitals recorders; Analog-to-Digital (A/D) converters. Reading: Reynolds, Section 4.5 Telford et al., Section 4.5 GEOL 335.3 Seismic Source Localized region within which a sudden increase in elastic energy leads to rapid stressing of the surrounding medium. Most seismic sources preferentially generate S-waves Easier to generate (pressure pulse); Easier to record and process (earlier, more impulsive arrivals). Requirements Broadest possible frequency spectrum; Sufficient energy; Repeatability; Safety - environmental and personnel; Minimal cost; Minimal coherent (source-induced) noise. GEOL 335.3 Land Source Explosives – chemical base Steep pressure pulse. Shotguns, rifles, blasting caps; …bombs, nuclear blasts… Surface (mechanical) Weight drop, hammer; Piezoelectric borehole sources (ultrasound ); Continuous signal Vibroseis (continuously varying frequency, 10-300 Hz) Mini-Sosie (multiple impact); Combination with Vibroseis (Swept Impact Seismic Technique, SIST) Drill bit ('Seismic While Drilling’); sparkers, ...truck spark plugs. GEOL 335.3 Mechanism of generation of seismic waves by explosion Stage 1: Detonation. Start of explosion - electric pulse ignites the blasting cap placed inside the charge. The pulse is also transmitted to recorder to set t = 0; Disturbance propagates at ~ 6-7 km/s (supersonic velocity); surrounding medium is unaffected; The explosive becomes hot gas of the same density as the solid - hence its pressure is very high (several GPa) Stage 2: Pressure pulse spreads out spherically as an inelastic shock wave Stresses >> material strength; Extensive cracking in the vicinity of the charge. Stage 3: At some distance, the stress equals the elastic limit Pressure pulse keeps spreading out spherically as an elastic wave.
    [Show full text]
  • Reflection Seismic Method
    GEOL463 ReflectionReflection SeismicSeismic MethodMethod Principles Data acquisition Processing Data visualization Interpretation* Linkage with other geophysical methods* Reading: Gluyas and Swarbrick, Section 2.3 Many books on reflection seismology (e.g., Telford et al.) SeismicSeismic MethodMethod TheThe onlyonly methodmethod givinggiving completecomplete picturepicture ofof thethe wholewhole areaarea GivesGives byby farfar thethe bestbest resolutionresolution amongamong otherother geophysicalgeophysical methodsmethods (gravity(gravity andand magnetic)magnetic) However, the resolution is still limited MapsMaps rockrock propertiesproperties relatedrelated toto porosityporosity andand permeability,permeability, andand presencepresence ofof gasgas andand fluidsfluids However, the links may still be non-unique RequiresRequires significantsignificant logisticallogistical efforteffort ReliesRelies onon extensiveextensive datadata processingprocessing andand inversioninversion GEOL463 SeismicSeismic ReflectionReflection ImagingImaging Acoustic (pressure) source is set off near the surface… Sound waves propagate in all directions from the source… This is the “ideal” 0.1-10% of the energy reflects of seismic imaging – flat surface and from subsurface contrasts… collocated sources This energy is recorded by and receivers surface or borehole “geophones”… In practice, multi-fold, offset recording is Times and amplitudes of these used, and zero-offset section is obtained by reflections are used to interpret extensive data the subsurface… processing
    [Show full text]