Hydrocarbon Biodegradation Potential in Environmental Bacterial Metagenome

Total Page:16

File Type:pdf, Size:1020Kb

Hydrocarbon Biodegradation Potential in Environmental Bacterial Metagenome Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology Hydrocarbon biodegradation potential in environmental bacterial metagenome Alicia Caro Pascual Master’s thesis in Molecular Environmental Biology – BIO3950 – December 2020 Table of Contents 1 Introduction ............................................................................................................................. 1 1.1 Barents Sea and the petroleum industry ...................................................................... 1 1.2 Hydrocarbon pollution in cold marine environments .................................................. 3 1.2.1 The fate of hydrocarbons in the marine environment .......................................... 3 1.3 Hydrocarbon degradation by bacteria .......................................................................... 5 1.3.1 Metabolic pathways of hydrocarbon degradation in bacteria .............................. 5 1.3.2 Hydrocarbon-degrading bacteria in marine environments ................................... 7 1.3.3 Bioremediation ..................................................................................................... 9 1.3.4 Functional metagenomics and fosmid libraries .................................................... 9 1.4 Study background ...................................................................................................... 10 1.5 Objectives .................................................................................................................. 11 2 Material and Methods ....................................................................................................... 12 2.1 Isolation of metagenomic DNA ................................................................................. 12 2.2 Media preparation ...................................................................................................... 12 2.2.1 Minimal media and Luria broth media ............................................................... 12 2.2.2 Diesel and crude oil ............................................................................................ 13 2.3 Metagenomic fosmid library production ................................................................... 14 2.3.1 Ligation of insert DNA into pCC2FOS plasmid vector ..................................... 14 2.3.2 Package of fosmid clones into the lambda phage .............................................. 14 2.3.3 Titer and storage of packaged fosmid clones ..................................................... 15 2.4 Culture of transformed E. coli and selection of clones .............................................. 15 2.5 Fosmid clones extraction and enzyme restriction ...................................................... 16 2.6 Sequencing of fosmid clones ..................................................................................... 17 2.7 Bioinformatic analysis ............................................................................................... 18 2.7.1 treatment of raw data and contig assembly ........................................................ 18 2.7.2 Assignation of taxonomy and functions to ORFs: MEGABLAST, BLASTn and BLASTx searches ............................................................................................................. 22 2.7.3 Determination of the phylogeny ......................................................................... 24 2.7.4 Databases and Servers ........................................................................................ 25 3 Results .............................................................................................................................. 26 3.1 Isolated metagenomic DNA ...................................................................................... 26 3.1.1 Titer of the packaged fosmid clones .................................................................. 27 3.2 Selection of transformed E. coli clones on selective hydrocarbon containing media 28 3.2.1 Fosmid clone DNA extraction and restriction enzyme analysis ........................ 32 3.3 Bioinformatic results ................................................................................................. 35 3.3.1 Preprocessing of raw data .................................................................................. 35 3.3.2 Assembly of contigs ........................................................................................... 35 3.3.3 Gene prediction and analysis .............................................................................. 38 3.3.4 Phylogenetic position of the fosmid clones ........................................................ 41 3.3.5 Analyses by custom BLAST on AromaDeg database and other online databases. 44 4 Discussion ........................................................................................................................ 45 4.1 Selection of fosmid clones ......................................................................................... 45 4.2 Crude oil and diesel cultures ..................................................................................... 45 4.3 Phylogeny .................................................................................................................. 47 4.4 Analysis of ORFs and Bacteria species ..................................................................... 47 4.4.1 Sequences 1, 3, 7 and 10: Phylum Planctomycetes ............................................ 47 4.4.2 Sequence 2: genus Maribacter ........................................................................... 52 4.4.3 Sequences 4 and 6: Synechococcales cyanobacterium ...................................... 54 4.4.4 Sequence 5: family Enterobacteraceae .............................................................. 56 4.4.5 Sequence 8: Azotobacter chroococcum .............................................................. 58 4.4.6 Sequence 9: order Chromatiales ........................................................................ 58 4.5 Bioremediation in Norway and future studies ........................................................... 63 5 Conclusions ...................................................................................................................... 63 Works cited .............................................................................................................................. 64 6 Appendix .......................................................................................................................... 71 Appendix 1: Bacterial genomic DNA isolation using CTAB .............................................. 71 Appendix 2: Current protocols in molecular biology ........................................................... 75 Appendix 3: Copycontrol HTP Fosmid library production kit with pCC2FOS vector ....... 78 Appendix 4: Minipreparation of plasmid DNA (alkaline lysis method) ........................... 113 Appendix 5: Enzyme restriction protocol for XbaI ............................................................ 114 Appendix 6: MEGABLAST and BLASTn searches of ORFs ........................................... 115 Appendix 7: Complete phylogenetic tree ........................................................................... 172 List of Abbreviations ABC transporter ATP-binding cassette HDB Hydrocarbon-degrading bacteria transporters KB Kilobase pair ABS Absorbance LB Luria Broth ATP Adenosine triphosphate Mb Megabase pair BLAST Basic Local Alignment Search Tool NCBI National Center for Biotechnology Information BLASTn Nucleotide BLAST NCS Norwegian Continental Shelf BLASTx Translated BLAST ORF Open Reading Frame BP Base Pair PAHs Polycyclic Aromatic Hydrocarbons BS Biosurfactant PDB Phage Dilution Buffer CG Cytosine Guanine PTS transporter Phosphotransferase CO Crude Oil system transporter CTAB Cetyl Trimethyl Ammonium RNA Ribonucleic acid Bromide RPM Revolutions Per Minute D Diesel rRNA Ribosomal RNA DNA Deoxyribonucleic acid TCA cycle TriCarboxylic Acid cycle DUF Domain of Unknown Function V Volts List of Tables Table 1. Taxonomy of Arctic or Antarctic oil-degrading bacteria [18]. a) An Antarctic, Ar Arctic, S sediment, SI sea ice, SW seawater. ............................................................................. 8 Table 2.Content description of M9 minimal media and hydrocarbon quantities added to the media. ....................................................................................................................................... 13 Table 3. Parameters used in bioinformatic tools BBDuk, Dedupe, BBNorm, BBMerge and Glimmer contained in the program Geneious 2020.2.2 [10]. ................................................... 19 Table 4. Parameters for De novo assembly and Map to reference alignment tools contained in the program Geneious 2020.2.2 [3]. ......................................................................................... 21 Table 5. Parameters for MEGABLAST, BLASTn, BLASTx and custom BLAST searches from the program Geneious 2020.2.2 [3] using NCBI database and tools [59] ....................... 23 Table 6. Nanodrop readings of the total DNA samples: DNA concentration (ng/μl), Absorbance ratio 260/280 (nm), Absorbance ratio 260/230 (nm), total quantity of DNA in samples (ng). ............................................................................................................................ 27 Table 7. Number of colonies grown per plate and CFU/ml in dilutions 1:1 and 1:10 of packaged
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • SUPPLEMENTARY INFORMATION in Silico Signature Prediction
    SUPPLEMENTARY INFORMATION In Silico Signature Prediction Modeling in Cytolethal Distending Toxin-Producing Escherichia coli Strains Maryam Javadi, Mana Oloomi*, Saeid Bouzari Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran http://www.genominfo.org/src/sm/gni-15-69-s001.pdf Supplementary Table 6. Aalphabetic abbreviation and description of putative conserved domains Alphabetic Abbreviation Description 17 Large terminase protein 2_A_01_02 Multidrug resistance protein 2A0115 Benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols] 52 DNA topisomerase II medium subunit; Provisional AAA_13 AAA domain; This family of domains contain a P-loop motif AAA_15 AAA ATPase domain; This family of domains contain a P-loop motif AAA_21 AAA domain AAA_23 AAA domain ABC_RecF ATP-binding cassette domain of RecF; RecF is a recombinational DNA repair ATPase ABC_SMC_barmotin ATP-binding cassette domain of barmotin, a member of the SMC protein family AcCoA-C-Actrans Acetyl-CoA acetyltransferases AHBA_syn 3-Amino-5-hydroxybenzoic acid synthase family (AHBA_syn) AidA Type V secretory pathway, adhesin AidA [Cell envelope biogenesis] Ail_Lom Enterobacterial Ail/Lom protein; This family consists of several bacterial and phage Ail_Lom proteins AIP3 Actin interacting protein 3; Aip3p/Bud6p is a regulator of cell and cytoskeletal polarity Aldose_epim_Ec_YphB Aldose 1-epimerase, similar to Escherichia coli YphB AlpA Predicted transcriptional regulator [Transcription] AntA AntA/AntB antirepressor AraC AraC-type
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Open Matthew R Moreau Ph.D. Dissertation Finalfinal.Pdf
    The Pennsylvania State University The Graduate School Department of Veterinary and Biomedical Sciences Pathobiology Program PATHOGENOMICS AND SOURCE DYNAMICS OF SALMONELLA ENTERICA SEROVAR ENTERITIDIS A Dissertation in Pathobiology by Matthew Raymond Moreau 2015 Matthew R. Moreau Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The Dissertation of Matthew R. Moreau was reviewed and approved* by the following: Subhashinie Kariyawasam Associate Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Bhushan M. Jayarao Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Mary J. Kennett Professor, Veterinary and Biomedical Sciences Vijay Kumar Assistant Professor, Department of Nutritional Sciences Anthony Schmitt Associate Professor, Veterinary and Biomedical Sciences Head of the Pathobiology Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Salmonella enterica serovar Enteritidis (SE) is one of the most frequent common causes of morbidity and mortality in humans due to consumption of contaminated eggs and egg products. The association between egg contamination and foodborne outbreaks of SE suggests egg derived SE might be more adept to cause human illness than SE from other sources. Therefore, there is a need to understand the molecular mechanisms underlying the ability of egg- derived SE to colonize the chicken intestinal and reproductive tracts and cause disease in the human host. To this end, the present study was carried out in three objectives. The first objective was to sequence two egg-derived SE isolates belonging to the PFGE type JEGX01.0004 to identify the genes that might be involved in SE colonization and/or pathogenesis.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Modulation of the Camp Levels with a Conserved Actinobacteria Phosphodiesterase 2 Enzyme Reduces Antimicrobial Tolerance in Mycobacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.267864; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Modulation of the cAMP levels with a conserved actinobacteria phosphodiesterase 2 enzyme reduces antimicrobial tolerance in mycobacteria 3 4 Michael Thomson1, Kanokkan Nunta1, Ashleigh Cheyne1, Yi liu1, Acely Garza-Garcia2 and 5 Gerald Larrouy-Maumus1† 6 7 1MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, 8 Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK 9 2The Francis Crick Institute, London NW1 1AT, United Kingdom. 10 11 †Corresponding author: 12 13 Dr Gerald Larrouy-Maumus 14 MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty 15 of Natural Sciences, Imperial College London, London, SW7 2AZ, UK 16 Telephone: +44 (0) 2075 947463 17 E-mail: [email protected] 18 19 20 1 e ag P 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.267864; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 Antimicrobial tolerance (AMT) is the gateway to the development of antimicrobial resistance 23 (AMR) and is therefore a major issue that needs to be addressed. 24 The second messenger cyclic-AMP (cAMP), which is conserved across all taxa, is involved 25 in propagating signals from environmental stimuli and converting these into a response.
    [Show full text]
  • Diversity of Rhodopirellula and Related Planctomycetes in a North Sea 1 Coastal Sediment Employing Carb As Molecular
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 2015-09 Diversity of Rhodopirellula and related planctomycetes in a North Sea coastal sediment employing carB as molecular marker. Zure, M http://hdl.handle.net/10026.1/9389 10.1093/femsle/fnv127 FEMS Microbiol Lett All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. 1 Title: Diversity of Rhodopirellula and related planctomycetes in a North Sea 2 coastal sediment employing carB as molecular marker 3 Authors: Marina Zure1, Colin B. Munn2 and Jens Harder1* 4 5 1Dept. of Microbiology, Max Planck Institute for Marine Microbiology, D-28359 6 Bremen, Germany, and 2School of Marine Sciences and Engineering, University of 7 Plymouth, Plymouth PL4 8AA, United Kingdom 8 9 *corresponding author: 10 Jens Harder 11 Max Planck Institute for Marine Microbiology 12 Celsiusstrasse 1 13 28359 Bremen, Germany 14 Email: [email protected] 15 Phone: ++49 421 2028 750 16 Fax: ++49 421 2028 590 17 18 19 Running title: carB diversity detects Rhodopirellula species 20 21 Abstract 22 Rhodopirellula is an abundant marine member of the bacterial phylum 23 Planctomycetes. Cultivation studies revealed the presence of several closely related 24 Rhodopirellula species in European coastal sediments. Because the 16S rRNA gene 25 does not provide the desired taxonomic resolution to differentiate Rhodopirellula 26 species, we performed a comparison of the genomes of nine Rhodopirellula strains 27 and six related planctomycetes and identified carB, coding for the large subunit of 28 carbamoylphosphate synthetase, as a suitable molecular marker.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0058468 A1 Mickeown (43) Pub
    US 20120058468A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0058468 A1 MickeoWn (43) Pub. Date: Mar. 8, 2012 (54) ADAPTORS FOR NUCLECACID Related U.S. Application Data CONSTRUCTS IN TRANSMEMBRANE (60) Provisional application No. 61/148.737, filed on Jan. SEQUENCING 30, 2009. Publication Classification (75) Inventor: Brian Mckeown, Oxon (GB) (51) Int. Cl. CI2O I/68 (2006.01) (73) Assignee: OXFORD NANOPORE C7H 2L/00 (2006.01) TECHNOLGIES LIMITED, (52) U.S. Cl. ......................................... 435/6.1:536/23.1 Oxford (GB) (57) ABSTRACT (21) Appl. No.: 13/147,159 The invention relates to adaptors for sequencing nucleic acids. The adaptors may be used to generate single stranded constructs of nucleic acid for sequencing purposes. Such (22) PCT Fled: Jan. 29, 2010 constructs may contain both strands from a double stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) (86) PCT NO.: PCT/GB1O/OO160 template. The invention also relates to the constructs gener ated using the adaptors, methods of making the adaptors and S371 (c)(1), constructs, as well as methods of sequencing double stranded (2), (4) Date: Nov. 15, 2011 nucleic acids. Patent Application Publication Mar. 8, 2012 Sheet 1 of 4 US 2012/0058468 A1 Figure 5' 3 Figure 2 Figare 3 Patent Application Publication Mar. 8, 2012 Sheet 2 of 4 US 2012/0058468 A1 Figure 4 End repair Acid adapters ligate adapters Patent Application Publication Mar. 8, 2012 Sheet 3 of 4 US 2012/0058468 A1 Figure 5 Wash away type ifype foducts irrirrosilise Type| capture WashRE products away unbcure Pace É: Wash away unbound rag terts Free told fasgirre?ts aid raiser to festible Figure 6 Beatre Patent Application Publication Mar.
    [Show full text]
  • The Planctomycete Stieleria Maiorica Mal15t Employs Stieleriacines to Alter the Species Composition in Marine Biofilms
    ARTICLE https://doi.org/10.1038/s42003-020-0993-2 OPEN The planctomycete Stieleria maiorica Mal15T employs stieleriacines to alter the species composition in marine biofilms Nicolai Kallscheuer 1,9, Olga Jeske1,2,9, Birthe Sandargo3,4,9, Christian Boedeker2, Sandra Wiegand 1,5, 1234567890():,; Pascal Bartling2, Mareike Jogler2, Manfred Rohde6, Jörn Petersen2, Marnix H. Medema 7, ✉ ✉ Frank Surup 3,4 & Christian Jogler 1,8 Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm compo- sition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide- associated protein sorting and biofilm formation. 1 Department of Microbiology, Radboud University, Nijmegen, The Netherlands. 2 Leibniz Institute DSMZ, Braunschweig, Germany. 3 Helmholtz Centre for Infection Research, Braunschweig, Germany. 4 German Centre for Infection Research (DZIF), Braunschweig, Germany. 5 Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany. 6 Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany.
    [Show full text]
  • Trna-Derived Fragments: Mechanisms Underlying Their Regulation of Gene Expression and Potential Applications As Therapeutic Targets in Cancers and Virus Infections
    Theranostics 2021, Vol. 11, Issue 1 461 Ivyspring International Publisher Theranostics 2021; 11(1): 461-469. doi: 10.7150/thno.51963 Review tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections 1,2 1 1 1 1 2 Xiuchong Yu , Yaoyao Xie , Shuangshuang Zhang , Xuemei Song , Bingxiu Xiao and Zhilong Yan 1. Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China. 2. Department of Gastrointestinal Surgery, Ningbo First Hospital, Ningbo University, Ningbo 315010, China. Corresponding authors: E-mail: [email protected], or [email protected]; Tel: +86-574-87600758; Fax: +86-574-87608638. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.08.14; Accepted: 2020.10.02; Published: 2021.01.01 Abstract tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological functions in cancers and stress-induced diseases. Herein, we first summarize the classification and biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication.
    [Show full text]