Aerospace-Facts-And-Figures-1982

Total Page:16

File Type:pdf, Size:1020Kb

Aerospace-Facts-And-Figures-1982 ... ...... :,tt ·.. .~ ... : · -~~- :·.=. .. ·' .·.' ...' .,~ -.. ·. • .:. ~ . i ~ -,, r'J.d, . -.-_,...)!_ r ' • ·• ·.·, ·, ; -·'.~. ... • • :.r --------------~-- ~ - ';'l~i.. ' f(";'' .:~_,• '-· -"~' · '..:,o···':..·: ~-'-'-""'-"-" ' '----'-' -'--------= Published by Aviation Week & Space Technology A MCGRAW-HILL PUBLICATION 1221 Avenue of the Americas New York, N.Y. 10020 (212) 997 ·3289 $9.95 Per Copy Copyright, August 1982 by Aerospace Industries Association of America, Inc. Library of Congress Catalog No. 46-25007 Compiled by Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. 1725 DeSales Street, N.W., Washington, D.C. 20036 (202) 429-4600 Director Research Center Virginia C. Lopez Manager Economic Data Service Janet Martinusen Editorial Consultant James J. Haggerty Acknowledgments Battelle Memorial Institute Civil Aeronautics Board Council of Economic Advisers Export-Import Bank of the United States Exxon International Company Federal Trade Commission General Aviation Manufacturers Association International Civil Aviation Organization McGraw-Hill Publications Company National Aeronautics and Space Administration National Science Foundation Office of Management and Budget U.S. Departments of Commerce (Bureau of the Census, Bureau of Economic Analysis, Bureau of Industrial Economics) Defense (Comptroller; Directorate for Information, Operations and Reports; Army, Navy, Air Force) Labor (Bureau of Labor Statistics) Transportation (Federal Aviation Administration) 4 Contents 6 Foreword 8 Aerospace Summary 29 Aircraft Production 48 ~sile Pro~s 58 SpaceProgranns 77 Air Transportation 95 Helicopter Transportation 104 Research and Development 116 Foreign Trade 130 Employment 142 Finance 153 Glossary 160 Index ' Foreword I For the U.S. aerospace in­ dustry, 1981 was a curiously paradoxical year. From the standpoint of sales, it was the best year in history-even after inflation is taken into account. But in certain statistical cate­ gories, there was evidence of disquieting trends, declines in activity or zero growth patterns one would not expect to see in a record-setting year. The industry's sales picture is best outlined by removing the distorting inflation factor, i.e., by converting the data to constant dollars. In constant dollar terms, 1981 marked the fifth consecutive year of sales growth and total sales exceeded those of the previous peak year (1968) by more than four percent. For 1981 , there was real sales growth in every major product group except one-civil aircraft. The decline in civil aircraft sales growth is paramount among the disquieting trends mentioned earlier. The industry's profit rate on sales remained at about four percent for the fifth straight year. That compares with an average of well below three percent for the prior decade. Aerospace profit is still below the average for all U.S. manufacturing industries, but the general improvement in earnings is encouraging to an industry having capital investment needs of such a high order. In 1981 , the industry once again made a major contribution to the overall U.S. economy by setting new records for export sales and net trade balance. The importance to the economy of high-value, high­ technology aerospace exports is underlined by this fact: in the last five years, when the U.S. as a whole experienced annual trade def­ icits totaling $145 billion, the adverse impact was softened by an offsetting aerospace trade surplus of more than $51 billion. Among th e troubling statistics for 1981 is the fact that the indus­ try's backlog of orders declined in real , inflation-adjusted terms after five years of solid gain during which the backlog increased by more than 80 percent. The major reason was a lull in orders of civil air­ craft, occasioned by foreign competition, the rec essi on, high interest rates and the depressed financial status of many of t r~ world's airlines. The backlog of civil jetliners, which had grown in big jumps fo r several years, declined by some $3.6 billion dollars. And that doesn't tell the whole story because the statistics cited are for 1981 ; continuing airline fin ancial di stress has brought a numbe r of can- 6 cellations of transport orders in 1982. Despite the peak levels attained in 1981, international trade is another area of concern; while we were exporting more aerospace products than ever, we were also importing aerospace products at a record pace. Another factor in the international trade picture was a sharp reduction in the backlog of orders from foreign airlines, a drop in value of more than one-third in 1981. That is an especially disturb­ ing note, because jetliner sales to foreign customers have for many years constituted not only the major element of the aerospace export volume but also the primary dollar-value component of the industry's overall civil aircraft production. Thus, the immediate future outlook is dim for the civil aircraft manufacturing segment of the industry, due to the combined effects of the recession and the still-increasing competition from foreign manufacturers. But projections of the world civil aircraft market for the coming decade remain high; the need for new and replacement aircraft has not diminished, only the customers' ability to buy. Given an economic upturn and improvement in the airlines' financial health, civil aircraft production could rise well beyond current levels in the latter half of the decade. There is a brighter outlook in the other major areas of industry effort. The Administration's defense buildup is moving into high gear and projections indicate considerably expanded industry activity in .aircraft and missile research, development and production. Similarly, the industry's sales of space systems are increasing steadily, due largely to a rapidly growing military space program. Space funding for the Department of Defense is now greater than for NASA. Budget plans contemplate substantial growth in combined DOD/NASA outlays, suggesting broadened industry workload in development and fabrication of space equipment. The story of the aerospace industry in 1981 is further chronicled in this 30th edition of Aerospace Facts and Figures, a significantly improved version that has been comprehensively revised to en­ hance statistical precision and to reflect more accurately the changing character of the aerospace industry. We trust this useful and informative volume will meet the wide acceptance enjoyed by its predecessors. Karl G. Harr, Jr. President Aerospace Industries Association 7 Aerospace Swnmary Sales. Total sales amounted to The aerospace industry's 1981 sales $63.5 billion, up $10.6 billion, or 20 volume was the best in history, with percent above the 1980 level. Half of real (inflation-adjusted) gains in most the increase-$5.4 billion-was in categories and an overall real in­ sales of military r~ ircraft ; there were crease of about 10 percent. There also appreciable .ncreases in the were, however, some disquieting missiles, space and non-aerospace notes. In production of civil aircraft, categories. Considered in inflation­ sales increased in current dollars adjusted constant dollars, the 1981 but declined-for the first time in sales volume topped the previous four years- in real terms. And the peak (1968) by more than four industry's backlog showed zero real percent. gr<:>wth after five years of impressive Aerospace industry sales repre- gams. Here is a breakdown of the in­ sented 2.2 percent of the Gross dustry's 1981 peformance: National Product and 3.2 percent of B AEROSPACE SUMMARY total sales by all U.S. manufacturing shipments continued to increase, industries; both figures were the but only slightly, from $13.1 billion in highest in a decade. 1980 to $13.2 billion in 1981. The Profit. The industry's net profit latter figure does not include spare after taxes amounted to $2.9 billion, parts or payments for R&D work and or 4.3 percent of net sales; the latter other services related to civil aircraft figure exactly matched that of the manufacture; the grand total was previous year. The aerospace profit $17.4 billion. edged closer to, but remained As is customary, the bulk of the below, the average for all U.S. dollar value was in sales of commer­ manufacturing corporations, which cial transports-$9.7 billion, or $200 was 4.7 percent in 1981. million less than in 1980. The in­ Backlog. The aerospace backlog dustry delivered 387 transports, the increased by a substantial $8.2 same as in 1980; 255 of them went billion, but the rate of increase was to foreign customers (up from 237) far below the dramatic gains of the and 132 to U.S. buyers (down from three prior years; converted to 150). Backlog for transports dropped constant dollars, the backlog was sharply, from $20.8 billion in 1980 to almost exactly the same as last $17.2 billion at the end of 1981. Of year's. At year-end 1981, orders on special note was the fact that orders the books amounted to just under from foreign airlines, which tradi· $99 billion in current dollars, in­ tionally constitute more than half of cluding $45.8 billion in orders from the backlog, dropped by $4.5 billion, the U.S government and $52.9 billion reducing the foreign backlog to less in work for other customers. than 45 percent of the total. The four-year pattern of increasing As is traditional, orders for air· civil helicopter production was craft-including engines and parts broken as shipments declined -constituted the principal element almost 300 units to a 1981 total of of the backlog-$62.1 billion or 63 1,072. The dollar value of sales also percent of the total. The major declined, from $656 million in 1980 backlog increases were in U.S. to $597 million in 1981. government aircraft-largely military General aviation plane shipments aircraft and related R&D-and in totaled 9,457, down from 11,881 in "other aerospace," a category that the previous year.
Recommended publications
  • CAAM 3 Report
    3rd Technical Report On Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards A joint effort of The Federal Aviation Administration and The Aerospace Industries Association March 30, 2017 Questions concerning distribution of this report should be addressed to: Federal Aviation Administration Manager, Engine and Propeller Directorate. TABLE OF CONTENTS Page Table of Contents iii List of Figures v I. Foreword 1 II. Background 1 III. Scope 2 IV. Discussion 3 V. Relationship to Previous CAAM Data 7 VI. General Notes and Comments 8 VII. Fleet Utilization 11 VIII. CAAM3 Team Members 12 IX. Appendices List of Appendices 13 Appendix 1: Standardized Aircraft Event Hazard Levels and Definitions 14 • General Notes Applicable to All Event Hazard Levels 19 • Rationale for Changes in Severity Classifications 19 • Table 1. Historical Comparison of Severity Level Descriptions and Rationale for CAAM3 Changes 21 Appendix 2: Event Definitions 39 Appendix 3: Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards (2001 through 2012) 44 • Uncontained Blade 44 • Uncontained Disk 50 • Uncontained – Other 56 iii • Uncontained – All Parts 62 • High Bypass Comparison by Generation 63 • Relationship Among High Bypass Fleet 64 • Case Rupture 66 • Case Burnthrough 69 • Under-Cowl Fire 72 • Strut/Pylon Fire 76 • Fuel Leak 78 • Engine Separation 82 • Cowl Separation 85 • Propulsion System Malfunction Recognition and Response (PSMRR) 88 • Crew Error 92 • Reverser/Beta Malfunction – In-Flight Deploy 96 • Fuel Tank Rupture/Explosion 99 • Tailpipe Fire 102 • Multiple-Engine Powerloss – Non-Fuel 107 • Multiple-Engine Powerloss – Fuel-Related 115 • Fatal Human Ingestion / Propeller Contact 120 • IFSD Snapshot by Hazard Level – 2012 Data Only 122 • RTO Snapshot by Hazard Level – 2012 Data Only 123 • APU Events 123 • Turboprop Events 124 • Matrices of Event Counts, Hazard Ratios and Rates 127 • Data Comparison to Previous CAAM Data 135 [ The following datasets which were collected in CAAM2 were not collected in CAAM3.
    [Show full text]
  • Home at Airbus
    Journal of Aircraft and Spacecraft Technology Original Research Paper Home at Airbus 1Relly Victoria Virgil Petrescu, 2Raffaella Aversa, 3Bilal Akash, 4Juan M. Corchado, 2Antonio Apicella and 1Florian Ion Tiberiu Petrescu 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy 3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 4University of Salamanca, Spain Article history Abstract: Airbus Commerci al aircraft, known as Airbus, is a European Received: 16-04-2017 aeronautics manufacturer with headquarters in Blagnac, in the suburbs of Revised: 18-04-2017 Toulouse, France. The company, which is 100% -owned by the industrial Accepted: 04-07-2017 group of the same name, manufactures more than half of the airliners produced in the world and is Boeing's main competitor. Airbus was Corresponding Author: founded as a consortium by European manufacturers in the late 1960s. Florian Ion Tiberiu Petrescu Airbus Industry became a SAS (simplified joint-stock company) in 2001, a ARoTMM-IFToMM, Bucharest subsidiary of EADS renamed Airbus Group in 2014 and Airbus in 2017. Polytechnic University, Bucharest, (CE) Romania BAE Systems 20% of Airbus between 2001 and 2006. In 2010, 62,751 Email: [email protected] people are employed at 18 Airbus sites in France, Germany, the United Kingdom, Belgium (SABCA) and Spain. Even if parts of Airbus aircraft are essentially made in Europe some come from all over the world. But the final assembly lines are in Toulouse (France), Hamburg (Germany), Seville (Spain), Tianjin (China) and Mobile (United States).
    [Show full text]
  • 1.1 Goals and Objectives
    Chapter One INVENTORY Rock Hill/York County Airport (Bryant Field – UZA) (the Airport) is a publicly owned general aviation facility located approximately four miles north of the central business district of the City of Rock Hill, South Carolina (the City, refer to Figures 1-1 and 1-2, pages 1-2 and 1-3). The Airport is owned and operated by the City of Rock Hill. In order to establish a planning guideline for future airport development, the owner has contracted this Airport Master Plan (Master Plan), which will satisfy future aviation demand in a financially feasible manner. 1.1 GOALS AND OBJECTIVES The Airport Master Plan presents both short- and long-term development for the Airport and graphically displays and reports the data and logic upon which the Master Plan is based. The goal of the Master Plan is to provide guidelines for future airport development, which will satisfy aviation demand in a cost-effective, feasible manner, while resolving aviation, environmental, and socioeconomic issues of the community. Objectives are attainable targets that are action-oriented and designed to address specific elements consistent with attainment of the goal. The objectives for Rock Hill/York County Airport (Bryant Field) are based on an initial evaluation of the Airport and its surrounding environs and meetings with Airport staff, City staff, South Carolina Department of Commerce Division of Aeronautics (SCDOA), and Federal Aviation Administration (FAA). As information is developed during data gathering efforts, objectives for the Airport Master
    [Show full text]
  • Fiche Pédagogique ANPI Date : 10/07/2019 – Page : 1/20 Référence : FICHE ANPI 2019/1 Rédacteur : Pierre Belair
    Fiche pédagogique ANPI Date : 10/07/2019 – page : 1/20 Référence : FICHE ANPI 2019/1 Rédacteur : Pierre Belair L’approche, l’atterrissage… et la remise des gaz Normalement, tout vol se termine par un atterrissage… Eventuellement une remise des gaz si celui-ci s’avère mal engagé ! A travers ce mémo (ok, un peu plus long que de coutume, mais le sujet le mérite), nous allons tenter de comprendre ce qui se passe, ou peut se passer, lors de cette phase critique du vol. Avant tout une histoire d’énergie Comme chacun sait, voler nécessite de l’énergie ! Si un planeur ne dispose que de sa perpétuelle chute comme source d’énergie, un avion profite d’un moteur aux ordres du pilote. Il pourra, dans certaines limites évidemment, ajuster la quantité d’énergie disponible à la quantité requise pour tenir une pente (vitesse verticale) et une vitesse (vitesse horizontale). Pour commencer, un petit rappel sur l’incidence : Exclusivement en palier (avion – 1 –), l’assiette « i » peut être 1 Incidence assimilée à l’incidence de l’avion « A » « A » ; L’incidence de l’aile est généralement légèrement plus horizon Pente élevée (calage de l’aile) mais pas représentée sur ces schémas. Vitesse « A » Incidence Pour une masse donnée, « A » l’incidence et la vitesse sont liées : Les schémas – 1 – et – 2 – représentent des avions volant à 2 la même incidence, donc la horizon même vitesse, pour une assiette « i » inférieure à « ii ». L’avion – 1 – est en palier. L’avion – 2 – est en montée. Incidence L’assiette « ii » est identique sur « B » 3 les schémas – 2 – et – 3 –, horizon toutefois l’incidence « B » est supérieure à l’incidence « A » correspondant à une vitesse plus faible.
    [Show full text]
  • \Aircraft Recognition Manual
    Jf V t 9fn I 4-'!- Vw'^ ' 'o | ^ renai; 408.$ /•> ,A1.AI / -3o FM DEPARTMENT OF THE ARMY FM 30-30 DEPARTMENT OF THE NAVY NavWeps 00-80T-75 DEPARTMENT OF THE AIR FORCE AFM 50-40 MARINE CORPS NavMC 2522 \AIRCRAFT RECOGNITION MANUAL SI ISSUED BY DIRECTION OF\ CHIEF OF BUREAU OF NAVAL WEAPONS \ \ I 4 DEPARTMENT OF THE ARMY FM 30-30 DEPARTMENT OF THE NAVY NavWeps 00-80T-75 DEPARTMENT OF THE AIR FORCE AFM 50-40 MARINE CORPS NavMC 2522 AIRCRAFT RECOGNITION MANUAL •a ISSUED BY DIRECTION OF CHIEF OF BUREAU OF NAVAL WEAPONS JUNE 1962 DEPARTMENTS OF THE ARMY, THE NAVY AND THE AIR FORCE, WASHINGTON 25, D.C., 15 June 1962 FM 30-30/NAVWEPS 00-80T-75/AFM 50-40/NAVMC 2522, Aircraft Recognition Manual, is published for the information and guidance of all concerned. i BY ORDER OF THE SECRETARIES OF THE ARMY, THE NAVY, AND THE AIR FORCE: G. H. DECKER, General, Umted States Army, Official: Chief of Staff. J. C. LAMBERT, Major General, United States Army, The Adjutant General. PAUL D. STROOP Rear Admiral, United States Navy, Chief, Bureau of Naval Weapons. CURTIS E. LEMAY, Official: Chief of Staff, United States Air Force, R. J. PUGH, Colonel, United States Air Force, Director of Administrative Services. C. H. HAYES, Major General, U.S. Marine Corps, Deputy Chief of Staff (Plans). H DISTRIBUTION: ARMY: Active Army : DCSPER (1) Inf/Mech Div Co/Btry/Trp 7-2 44-112 ACSI (1) (5) except Arm/Abn Div 7- 44-236 52 DCSLOG (2) Co/Trp (1) 8- 44-237 137 DCSOPS(5) MDW (1) 8-500 (AA- 44-446 ACSRC (1) Svc Colleges (3) AH) 44447 CNGB (1) Br Svc Sch (5) except 10-201 44^536
    [Show full text]
  • Aeronautical Engineering
    NASA SP-7037 (36) ND AERONAUTICAL ENGINEERING A SPECIAL BIBLIOGRAPHY WITH INDEXES Supplement 36 OCTOBER 1973 ZkS&-Sp-7037 (36) EROAUTIC&L N74-14702 0GIEEG A SPCILL BIBLIOGMPHY WITH INDEXES, SUPPLENgIT 36 (N3AS) $5.25 Unclas 00/01 27136 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ACCESSION NUMBER RANGES Accession numbers cited in this Supplement fall within the following ranges: IAA (A-10000 Series) A73-34073 -- A73-37144 STAR (N-10000 Series) N73-25997 - N 73-27884 This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Tisco, Inc. The Administrator of the National Aeronautics and Space Administration has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Agency. Use of funds for printing this periodical has been approved by the Director of the Office of Management and Budget through July 1, 1974. N74-14702 AERONAUTICAL ENGINEERING - A SPECIAL BIBLIOGRAPHY (SUPPLEMENT 36) National Aeronautics and Space Administration Washington, DC Oct 73 N74-14702 1. Report No. 2. Governmmnt Accession No. 3. Recipient's Catalog No. NASA SP-7037 (36) 4. Titleand Subtitle 5. Report Date October 1973 AERONAUTICAL ENG INEERING e.Performing Organization Code A Special Bibliography (Supplement 36) 7. Author(s) 8. Performing Organization Report No. 10. Work Unit No. 9. Performing Organization Name and Address National Aeronautics and Space Administration 11. Contractor Grant No. Washington, D. C; 20546 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code 15.
    [Show full text]
  • CHAMPION AEROSPACE LLC AVIATION CATALOG AV-14 Spark
    ® CHAMPION AEROSPACE LLC AVIATION CATALOG AV-14 REVISED AUGUST 2014 Spark Plugs Oil Filters Slick by Champion Exciters Leads Igniters ® Table of Contents SECTION PAGE Spark Plugs ........................................................................................................................................... 1 Product Features ....................................................................................................................................... 1 Spark Plug Type Designation System ............................................................................................................. 2 Spark Plug Types and Specifications ............................................................................................................. 3 Spark Plug by Popular Aircraft and Engines ................................................................................................ 4-12 Spark Plug Application by Engine Manufacturer .........................................................................................13-16 Other U. S. Aircraft and Piston Engines ....................................................................................................17-18 U. S. Helicopter and Piston Engines ........................................................................................................18-19 International Aircraft Using U. S. Piston Engines ........................................................................................ 19-22 Slick by Champion .............................................................................................................................
    [Show full text]
  • Human Factors Industry News ! Volume XV
    Aviation Human Factors Industry News ! Volume XV. Issue 21, October 13, 2019 Hello all, To subscribe send an email to: [email protected] In this weeks edition of Aviation Human Factors Industry News you will read the following stories: ★FAA Aviation MX Human Factors ★FAA complains to ICAO of Quarterly weakening skills of "manual" aircraft piloting ★Two Former NTSB Experts Create atthe Bedford “Flight Safety a few Detectives”years ago was a perfect★Criminal example Charges of professionals Brought whoPodcast had drifted over years into a very unsafeAgainst operation. Aeroflot SJ100 This crewCrash Pilot was★Exposed literally Engine an “accident Forces Unitedwaiting to happen”★Japanese and never sailor throughkilled by a consciousAirlines Flight decision. To Return This Tovery Denver same processpropeller fooled while a very working smart on bunch aircraft ofInternational engineers andAirport managers at NASA andengine brought down two US space shuttles! This process is built into our human software. ★The Four Pillars of Safety ★‘Accident waiting to happen’: Management After death, airport workers want safety improvements Human Factors Industry News 1 FAA Aviation MX Human Factors Quarterly Human Factors Industry News 2 https://www.faa.gov/about/initiatives/maintenance_hf/fatigue/publications/ media/Aviation-Mx-HF-Newsletter-September-2019.pdf Two Former NTSB Experts Create the “Flight Safety Detectives” Podcast The new show will dig into all aspects of aviation. John Goglia and Gregory Feith, two well-known and outspoken aviation safety insiders, this week released episode three of their new podcast the "Flight Safety Detectives." The show looks in depth at aircraft accidents, aircraft technology and the big business of aviation around the world.
    [Show full text]
  • Part 2 — Aircraft Type Designators (Decode) Partie 2 — Indicatifs De Types D'aéronef (Décodage) Parte 2 — Designadores De Tipos De Aeronave (Descifrado) Часть 2
    2-1 PART 2 — AIRCRAFT TYPE DESIGNATORS (DECODE) PARTIE 2 — INDICATIFS DE TYPES D'AÉRONEF (DÉCODAGE) PARTE 2 — DESIGNADORES DE TIPOS DE AERONAVE (DESCIFRADO) ЧАСТЬ 2. УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ТИПОВ ВОЗДУШНЫХ СУДОВ ( ДЕКОДИРОВАНИЕ ) DESIGNATOR MANUFACTURER, MODEL DESCRIPTION WTC DESIGNATOR MANUFACTURER, MODEL DESCRIPTION WTC INDICATIF CONSTRUCTEUR, MODÈLE DESCRIPTION WTC INDICATIF CONSTRUCTEUR, MODÈLE DESCRIPTION WTC DESIGNADOR FABRICANTE, MODELO DESCRIPCIÓN WTC DESIGNADOR FABRICANTE, MODELO DESCRIPCIÓN WTC УСЛ . ИЗГОТОВИТЕЛЬ , МОДЕЛЬ ВОЗДУШНОГО WTC УСЛ . ИЗГОТОВИТЕЛЬ , МОДЕЛЬ ВОЗДУШНОГО WTC ОБОЗНАЧЕНИЕ ОБОЗНАЧЕНИЕ A1 DOUGLAS, Skyraider L1P M NORTH AMERICAN ROCKWELL, Quail CommanderL1P L DOUGLAS, AD Skyraider L1P M NORTH AMERICAN ROCKWELL, A-9 Sparrow L1P L DOUGLAS, EA-1 Skyraider L1P M Commander NORTH AMERICAN ROCKWELL, A-9 Quail CommanderL1P L A2RT KAZAN, Ansat 2RT H2T L NORTH AMERICAN ROCKWELL, Sparrow CommanderL1P L A3 DOUGLAS, TA-3 Skywarrior L2J M DOUGLAS, NRA-3 SkywarriorL2J M A10 FAIRCHILD (1), OA-10 Thunderbolt 2 L2J M DOUGLAS, A-3 Skywarrior L2J M FAIRCHILD (1), A-10 Thunderbolt 2L2J M FAIRCHILD (1), Thunderbolt 2L2J M DOUGLAS, ERA-3 SkywarriorL2J M AVIADESIGN, A-16 Sport Falcon L1P L DOUGLAS, Skywarrior L2J M A16 AEROPRACT, A-19 L1P L A3ST AIRBUS, Super Transporter L2J H A19 AIRBUS, Beluga L2J H A20 DOUGLAS, Havoc L2P M DOUGLAS, A-20 Havoc L2P M AIRBUS, A-300ST Super TransporterL2J H AEROPRACT, Solo L1P L AIRBUS, A-300ST Beluga L2J H A21 SATIC, Beluga L2J H AEROPRACT, A-21 Solo L1P L SATIC, Super Transporter L2J H A22 SADLER, Piranha
    [Show full text]
  • Aircraft Library 
    Interagency Aviation Training Aircraft Library Disclaimer: The information provided in the Aircraft Library is intended to provide basic information for mission planning purposes and should NOT be used for flight planning. Due to variances in Make and Model, along with aircraft configuration and performance variability, it is necessary acquire the specific technical information for an aircraft from the operator when planning a flight. Revised: June 2021 Interagency Aviation Training—Aircraft Library This document includes information on Fixed-Wing aircraft (small, large, air tankers) and Rotor-Wing aircraft/Helicopters (Type 1, 2, 3) to assist in aviation mission planning. Click on any Make/Model listed in the different categories to view information about that aircraft. Fixed-Wing Aircraft - SMALL Make /Model High Low Single Multi Fleet Vendor Passenger Wing Wing engine engine seats Aero Commander XX XX XX 5 500 / 680 FL Aero Commander XX XX XX 7 680V / 690 American Champion X XX XX 1 8GCBC Scout American Rockwell XX XX 0 OV-10 Bronco Aviat A1 Husky XX XX X XX 1 Beechcraft A36/A36TC XX XX XX 6 B36TC Bonanza Beechcraft C99 XX XX XX 19 Beechcraft XX XX XX 7 90/100 King Air Beechcraft 200 XX XX XX XX 7 Super King Air Britten-Norman X X X 9 BN-2 Islander Cessna 172 XX XX XX 3 Skyhawk Cessna 180 XX XX XX 3 Skywagon Cessna 182 XX XX XX XX 3 Skylane Cessna 185 XX XX XX XX 4 Skywagon Cessna 205/206 XX XX XX XX 5 Stationair Cessna 207 Skywagon/ XX XX XX 6 Stationair Cessna/Texron XX XX XX 7 - 10 208 Caravan Cessna 210 X X x 5 Centurion Fixed-Wing Aircraft - SMALL—cont’d.
    [Show full text]
  • Desind Finding
    NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application.
    [Show full text]
  • Inhaltsverzeichnis
    Inhaltsverzeichnis Zur Gecchichte das Flugzeugs 7 7 Transavia PI-12 „Airtruk'7PL-12 U „Flying CHINA Mango" 36/570 1. Die Nachahmung des Vogelflugs 77 Harbin C-11 57/572 „Jie-Fang" 57/572 2. Die Vorbilder Nanchang F-6bis 58/572 für den Flug des Menschen 12 BELGIEN „Peking-1" 58/572 3. Die ersten Motorflugzeugprojekte 12 Avions Fairey „Tipsy Nipper" 37/570 4. Die Verwirklichung des Gleitflugs- SABCAS-2 37/570 Voraussetzung für den Motorflug 14 Stampe et Renard SV-4 C 38/570 CSSR 6. Der erste Motorflug der Brüder Wright 75 Aero Ae-02 59/572 6. Die ersten Motorflüge in Europa AeroA-42 59/572 und die Entwicklung der Luftfahrttechnik BRASILIEN Aero 145 60/572 bis zum Jahre 1914 76 AviaBH-3 60/572 7. Der erste Weltkrieg EMBRAER EMB-110 „Bandeirante" 39/570 Avia B-534 67/572 und die Luftfahrttechnik 17 EMBRAER EMB-200/201 „Ipanema" 39/570 AviaB-135 67/572 ITA „Urupema" 40/570 HC-2 „Heli Baby'7HC-102 62/572 8. Der Aufschwung der Luftfahrttechnik Neiva 360 C „Regente"/„Regenta Elo'7 L-13„Blanik" 63/572 in den Jahren 1919 bis 1939 19 „Lanceiro" 40/570 L-60 „Brigadyr" 63/572 8.1. Bauweisen 19 Neiva Paulistinha 56-C/56-D 47/570 L-40 „Meta Sokol" 64/572 8.2. Triebwerke 20 Neiva N-621 „Universal"/T-25 47/570 L-200 „Morava" 64/572 8.3. Aerodynamik 21 L-29 „Delfin" 65/572 8.4. Geschwindigkeiten 22 L-39 „Albatros" 65/572 8.5. Das Verkehrsflugzeug 24 L-410 „Turbolet" 66/572 8.6.
    [Show full text]