Impact of the Artificial Strait in the Vistula Spit on the Hydrodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Impact of the Artificial Strait in the Vistula Spit on the Hydrodynamics water Article Impact of the Artificial Strait in the Vistula Spit on the Hydrodynamics of the Vistula Lagoon (Baltic Sea) Michał Szydłowski * , Tomasz Kolerski and Piotr Zima Faculty of Civil and Environmental Engineering, Gda´nskUniversity of Technology, Narutowicza 11/12, 80-233 Gda´nsk,Poland; [email protected] (T.K.); [email protected] (P.Z.) * Correspondence: [email protected]; Tel.: +48-58-347-1809 Received: 25 March 2019; Accepted: 8 May 2019; Published: 10 May 2019 Abstract: In the Vistula Lagoon, storm surges are induced by variable sea levels in the Gulf of Gda´nsk and wind action. The rising of the water level in the southern part of the basin, exceeding 1.0 m above mean sea level, can be dangerous for the lowland area of Zuławy˙ Elbl ˛askie,causing the inundation of the polders adjacent to the lagoon. One of the potential possibilities to limit the flood risk is to decrease the water level in the lagoon during strong storm surges by opening an artificial canal to join the lagoon with the Gulf of Gda´nsk.The decision to build a new strait in the Vistula Spit was made in 2017. In order to analyze the impact of the artificial connection between the sea and the lagoon during periods of high water stages in the southern part the lagoon, mathematical modelling of the hydrodynamics of the Vistula Lagoon is required. This paper presents the shallow water equations (SWEs) model adapted to simulate storm surges driven by the wind and sea tides, and the numerical results obtained for the present (without the new strait) and future (with the new strait) configuration of the Vistula Lagoon. Keywords: Vistula Lagoon; storm surges; mathematical modelling; flood risk; artificial strait 1. Introduction Coastal lagoons are defined in [1] as inland and shallow water bodies (depths not exceeding a few meters), separated from the ocean by a barrier. They are connected to the ocean by at least one restricted inlet. The orientation of the lagoon may vary, but the parallel to the shore is dominant. According to [2], coastal lagoons occur on about 12% of the length of the world’s coastline. The formation of lagoons could be caused by alluvial progradation, the transgression of barriers in response to a sea level rise, or be formed behind storm-build barriers. A good example of this last type of formation can be found on the southern shores of the Baltic Sea. These semi-closed water areas are very calm and have the same salinity as the open sea, making them ideal for aquaculture. Some lagoons have been extensively converted for brackish-water fish ponds (e.g., the lagoons south of Madras), shellfish aquaculture (i.e., lakes on Hokkaido Island [3]), or cage culture, which is widespread around the world [4]. Changing climatic conditions [5,6] over the next century are likely to increase marine influences in lagoons, by the action of wind and storm surges. The paper presents some possibility of flood relief by the example of the proposed cut channel on the Vistula Lagoon transboundary water body. The Vistula Lagoon is located on the southern coast of the Baltic Sea, in the east part of the Gulf of Gda´nsk (Figure1). The length of the lagoon is 90.7 km and its width varies from almost 6 km up to 13 km. The mean width is 8.9 km. The lagoon is a very shallow basin with a mean depth of only 2.75 m. It is separated from the Gulf of Gda´nsk by the Vistula Spit of a length of about 65 km. The only connection between the Vistula Lagoon and the Baltic Sea is through the Strait of Baltiysk, which is 2 km long, 440 m wide, and approximately 8.8 m deep. The Vistula Lagoon, which developed about 6000 years ago, was created by being cut off from the Baltic Sea by the Vistula Spit. Since the digging of the canal Water 2019, 11, 990; doi:10.3390/w11050990 www.mdpi.com/journal/water Water 2019, 11, 990 2 of 19 only connection between the Vistula Lagoon and the Baltic Sea is through the Strait of Baltiysk, which Water 2019, 11, 990 2 of 18 is 2 km long, 440 m wide, and approximately 8.8 m deep. The Vistula Lagoon, which developed about 6000 years ago, was created by being cut off from the Baltic Sea by the Vistula Spit. Since the digging of(artificial the canal strait) (artificial across thestrait) Vistula across Spit the in 1497Vistula in the Spit vicinity in 1497 of Baltiysk,in the vicinity the Vistula of Baltiysk, Lagoon the has Vistula been in Lagoonconstant has contact been with in constant the sea [ 7contact]. The lagoon with the represents sea [7]. aThe transboundary lagoon represents area divided a transboundary into two parts area by dividedthe state into border two between parts by Poland the state and border Russia. between The total Poland area of and the Russia. lagoon The measures total area 838 kmof the2, of lagoon which measures472.5 km2 838belongs km2,to of Russia. which 472.5 The shore km2 linebelongs is 270 to km Russia. long, The with shore a water line volume is 270 km of 2.3 long, km 3with[8]. a water volume of 2.3 km3 [8]. Figure 1. LocationLocation of of the the Vistula Vistula Lagoon. Unsteady flows flows in the Vistula Lagoon are usually caused by changes of the sea level in the Gulf of Gda Gda´nskandńsk and by wind action on the water surface of the lagoon. When When the the water stage of the Gulf of Gda Gda´nskrises,ńsk rises, a difference difference in sea level in relation to the lagoonlagoon appears. This This results results in in a strong water current directed into the lagoon. The The decrease decrease of of the the water water table table in in the Baltic Sea causes the lagoonlagoon water water to to flow flow into into the the sea, sea, creating creating a strong a strong current current in the in thestrait strait in the in opposite the opposite direction. direction. The 3 totalThe totalvolume volume of sea of seawater water inflowing inflowing into into the the lagoon lagoon equals equals about about 17 17 km km3 perper year. year. In In extreme 3 1 conditions, the water inflowinflow reaches 10,00010,000 mm3 s−-1. .Such Such a asituation situation can can occur occur several several times times per per year, year, mainly in autumn andand winter,winter, whenwhen storm storm surges surges in in the the sea sea reach reach a watera water level level of overof over 0.8 0.8 m a.s.l.m a.s.l. [9]. 3 1 [9].The The total total outflow outflow from allfrom the all rivers the enteringrivers entering into the into lagoon the is lagoon about 180is about m s− 180, and m has3 s-1 no, and significant has no significantinfluence on influence changes inon the changes water stagein the in water this basin. stage Except in this for basin. the water Except exchange for the through water exchange the Strait throughof Baltiysk, the theStrait hydrodynamic of Baltiysk, the conditions hydrodynamic of the lagoon conditions depend of the on thelagoon wind depend action. on In the the wind region action. of the 1 InVistula the region Lagoon, of the SW Vistula (from South-West Lagoon, SW direction) (from Sout windsh-West with direction) a velocity winds from 4 with to 6 ma velocity s− (wind from velocity 4 to 6measurements m s-1 (wind velocity at a height measurements of 10 m) prevailat a height [8]. of These 10 m) winds prevail can [8]. cause These a risewinds of can the cause water a level rise of in thethe water Gulf of level Gda´nskand in the Gulf in theof Gda Vistulańsk Lagoonand in the of upVistula to 0.8 Lagoon m over of the up mean to 0.8 sea m level. over However,the mean sea NE level.(from However, North-East NE direction) (from North-East winds in particular direction) cause winds a dangerous in particular water cause level a risedangerous in the southern water level part 1 riseof the in the Vistula southern Lagoon. part Forof the long Vistula periods Lagoon. (12 h Fo andr long more) periods of strong (12 h NE and winds more) (10 of mstrong s− and NE winds more), (10a rise m ofs-1 theand water more), level a rise exceeding of the water+1.0 level m and exceeding in extremes +1.0 reachingm and in +extremes1.5 m above reaching the mean +1.5 m sea above level can be observed [9]. The total tidal vertical range in the southern part of the lagoon is about 3.0 m (from –1.5 up to +1.5 m a.s.l.). Although NE winds are relatively rare, they can be very dangerous for Water 2019, 11, 990 3 of 19 Water 2019, 11, 990 3 of 19 Waterthe mean2019, 11sea, 990 level can be observed [9]. The total tidal vertical range in the southern part of the lagoon3 of 18 theis about mean 3.0 sea m level (from can –1.5 be upobserved to +1.5 [9].m a.s.l.). The total Alth tidalough vertical NE winds range are in relatively the southern rare, part they of can the be lagoon very isdangerous about 3.0 form (fromthe polders –1.5 up adjacent to +1.5 m to a.s.l.).
Recommended publications
  • Pomorskie Voivodeship Development Strategy 2020
    Annex no. 1 to Resolution no. 458/XXII/12 Of the Sejmik of Pomorskie Voivodeship of 24th September 2012 on adoption of Pomorskie Voivodeship Development Strategy 2020 Pomorskie Voivodeship Development Strategy 2020 GDAŃSK 2012 2 TABLE OF CONTENTS I. OUTPUT SITUATION ………………………………………………………… 6 II. SCENARIOS AND VISION OF DEVELOPMENT ………………………… 18 THE PRINCIPLES OF STRATEGY AND ROLE OF THE SELF- III. 24 GOVERNMENT OF THE VOIVODESHIP ………..………………………… IV. CHALLENGES AND OBJECTIVES …………………………………………… 28 V. IMPLEMENTATION SYSTEM ………………………………………………… 65 3 4 The shape of the Pomorskie Voivodeship Development Strategy 2020 is determined by 8 assumptions: 1. The strategy is a tool for creating development targeting available financial and regulatory instruments. 2. The strategy covers only those issues on which the Self-Government of Pomorskie Voivodeship and its partners in the region have a real impact. 3. The strategy does not include purely local issues unless there is a close relationship between the local needs and potentials of the region and regional interest, or when the local deficits significantly restrict the development opportunities. 4. The strategy does not focus on issues of a routine character, belonging to the realm of the current operation and performing the duties and responsibilities of legal entities operating in the region. 5. The strategy is selective and focused on defining the objectives and courses of action reflecting the strategic choices made. 6. The strategy sets targets amenable to verification and establishment of commitments to specific actions and effects. 7. The strategy outlines the criteria for identifying projects forming part of its implementation. 8. The strategy takes into account the specific conditions for development of different parts of the voivodeship, indicating that not all development challenges are the same everywhere in their nature and seriousness.
    [Show full text]
  • Development Prospects of Tourist Passenger Shipping in the Polish Part of the Vistula Lagoon
    sustainability Article Development Prospects of Tourist Passenger Shipping in the Polish Part of the Vistula Lagoon Krystian Puzdrakiewicz * and Marcin Połom * Division of Regional Development, Faculty of Oceanography and Geography, University of Gda´nsk, 80-309 Gda´nsk,Poland * Correspondence: [email protected] (K.P.); [email protected] (M.P.) Abstract: The Vistula Lagoon is a cross-border area with high natural values and a developing market of tourist services. Passenger shipping is an important part of local tourism, but ship owners are insufficiently involved in planning processes and their views on creating shipping development are underrepresented. The article aims to compare the vision of the development of passenger shipping in the Polish part of the Vistula Lagoon between local governments creating the spatial policy and ship owners offering transport services. We have made an attempt to verify the development prospects. The collation of these visions was based primarily on the qualitative analysis of the content of planning and strategic documents (desk research method) and a survey conducted among all six ship owners. Thanks to the comparative analysis, it was possible to show similarities and differences and to indicate recommendations. The paper presents review of the available literature on the subject, thanks to which the research area was identified as unique in Europe. On the one hand, it is a valuable natural area, which is an important tourist destination, on the other hand, there are organizational and infrastructural limitations in meeting the needs of tourists. Then, field research was conducted, unpublished materials were collected, and surveys were conducted with the Citation: Puzdrakiewicz, K.; Połom, M.
    [Show full text]
  • Alosa Fallax (Lacépède, 1803) in German and Adjacent Waters of the Baltic Sea
    Not to be cited without prior reference to the authors ICES Annual Science Conference 2004 CM 2004/S:08 Use of Estuarine and Freshwaters Habitats and the way that Freshwater and Diadromous Fish use Them Status of the anadromous twaite shad Alosa fallax (Lacépède, 1803) in German and adjacent waters of the Baltic Sea R. Thiel, P. Riel, R. Neumann and H. M. Winkler ABSTRACT The status of twaite shad in German and adjacent waters of the Baltic Sea was investigated based on the analysis of ichthyological museum collections, historical commercial catch statistics, recent catch records from commercial and recreational fishery and research hauls with different trawls from August 2003 to July 2004. 42 % of the historical records of twaite shad were estimated in subdivisions 24, whereas 21 % were registered in subdivision 26. A. fallax was mainly distributed within the areas of Pommeranian Bay and Pommeranian coast, Szczecin Lagoon, Bay of Gdańsk, Vistula Spit, Vistula Lagoon, Kuršiu Spit and Kuršiu Lagoon. Twaite shad was an important commercial species in those areas during the last quarter of the 19th and the first half of the 20th century. The annual catches of twaite shad in the Southern Baltic declined sharply In the 1950s. The mean annual catch of twaite shad amounted to 90 982 kg for the entire Southern Baltic Sea between 1891 and 1960. About 47.9 % of that value were contributed by subdivision 26, comprising the areas of Gdańsk Bay, Vistula Lagoon/Vistula Spit and Kuršiu Lagoon/Kuršiu Spit. The proportion of subdivision 24, comprising the areas of Pommeranian Bay/Pommeranian coast and Szczecin Lagoon, amounted to 37.5 %.
    [Show full text]
  • A Captive Island Kaliningrad Between MOSCOW and the EU
    41 A CAPTIVE ISLAND KAlInIngRAD bETWEEn MOSCOW AnD ThE EU Jadwiga Rogoża, Agata Wierzbowska-Miazga, Iwona Wiśniewska NUMBER 41 WARSAW JULY 2012 A CAPTIVE ISLAND KALININGRAD BETWEEN MOSCOW AND THE EU Jadwiga Rogoża, Agata Wierzbowska-Miazga, Iwona Wiśniewska © Copyright by Ośrodek Studiów Wschodnich im. Marka Karpia / Centre for Eastern Studies CONTENT EDITORS Adam Eberhardt, Marek Menkiszak EDITORS Katarzyna Kazimierska, Anna Łabuszewska TRANSLATION Ilona Duchnowicz CO-OPERATION Jim Todd GRAPHIC DESIGN PARA-BUCH CHARTS, MAP, PHOTOGRAPH ON COVER Wojciech Mańkowski DTP GroupMedia PuBLISHER Ośrodek Studiów Wschodnich im. Marka Karpia Centre for Eastern Studies ul. Koszykowa 6a, Warsaw, Poland Phone + 48 /22/ 525 80 00 Fax: + 48 /22/ 525 80 40 osw.waw.pl ISBN 978–83–62936–13–7 Contents KEY POINTS /5 INTRODUCTION /8 I. KALININGRAD OBLAST: A SUBJECT OR AN OBJECT OF THE F EDERATION? /9 1. THE AMBER ISLAND: Kaliningrad today /9 1.1. Kaliningrad in the legal, political and economic space of the Russian Federation /9 1.2. Current political situation /13 1.3. The current economic situation /17 1.4. The social situation /24 1.5. Characteristics of the Kaliningrad residents /27 1.6. The ecological situation /32 2. AN AREA UNDER SPECIAL SURVEILLANCE: Moscow’s policy towards the region /34 2.1. The policy of compensating for Kaliningrad’s location as an exclave /34 2.2. The policy of reinforcing social ties with the rest of Russia /43 2.3. The policy of restricted access for foreign partners to the region /45 2.4. The policy of controlling the region’s co-operation with other countries /47 3.
    [Show full text]
  • (Baltic Sea) on Nutrient Concentrations and Primary Production
    The influence of the Hel OCEANOLOGIA, 47 (4), 2005. pp. 567–590. upwelling (Baltic Sea) on C 2005, by Institute of nutrient concentrations Oceanology PAS. and primary production KEYWORDS –theresultsofan Baltic Sea ecohydrodynamic model* Upwelling Ecohydrodynamic modelling Nutrients Primary production Marek Kowalewski Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL–81–378 Gdynia, Poland; e-mail: [email protected] Received 21 February 2005, revised 10 October 2005, accepted 20 October 2005. Abstract An ecohydrodynamic model was used to investigate the effect of the Hel upwelling on nutrient concentrations, primary production and phytoplankton biomass. The model covered the whole Baltic Sea with a 5 NM grid spacing and the Gulf of Gdańskwith a 1 NM grid spacing. Validation indicated good agreement between model results and measurements in the GdańskDeep, and slightly weakerconcord for the Hel upwelling area. The vertical nutrient fluxes associated with up- and downwelling in the Hel region were simulated for two 30-day periods in 2000. The nutrient input resulting from long-term upwelling is comparable to the load carried into the Gulf of Gdańskby the Vistula (Wisła), the largest river in the vicinity. Performed at times when upwelling was almost permanent, the simulations showed elevated nutrient concentrations in surface waters. This was especially distinct in spring when primary production and phytoplankton biomass were both higher. In late summer, however, upwelling caused primary production to decrease, despite the elevated nutrient levels. * This research was supported by the State Committee for Scientific Research, Poland (grant No 6 P04G 061 17). Editing assistance of the article was provided by BALTDER (EVK3-CT-2002-80005), funded by the European Commission under the 5th Framework Programme.
    [Show full text]
  • The Development of New Trans-Border Water Routes in the South-East Baltic: Methodology and Practice Kropinova, Elena G.; Anokhin, Aleksey
    www.ssoar.info The development of new trans-border water routes in the South-East Baltic: methodology and practice Kropinova, Elena G.; Anokhin, Aleksey Veröffentlichungsversion / Published Version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Kropinova, E. G., & Anokhin, A. (2014). The development of new trans-border water routes in the South-East Baltic: methodology and practice. Baltic Region, 3, 121-136. https://doi.org/10.5922/2079-8555-2014-3-11 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Free Digital Peer Publishing Licence This document is made available under a Free Digital Peer zur Verfügung gestellt. Nähere Auskünfte zu den DiPP-Lizenzen Publishing Licence. For more Information see: finden Sie hier: http://www.dipp.nrw.de/lizenzen/dppl/service/dppl/ http://www.dipp.nrw.de/lizenzen/dppl/service/dppl/ Diese Version ist zitierbar unter / This version is citable under: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-51373-9 E. Kropinova, A. Anokhin This article offers an integrative ap- THE DEVELOPMENT proach to the development of trans-border water routes. Route development is analy- OF NEW TRANS-BORDER sed in the context of system approach as in- WATER ROUTES tegration of geographical, climatic, mea- ning-related, infrastructural, and market- IN THE SOUTH-EAST ing components. The authors analyse the Russian and European approaches to route BALTIC: METHODOLOGY development. The article focuses on the in- stitutional environment and tourist and rec- AND PRACTICE reational resources necessary for water route development. Special attention is paid to the activity aspect of tourist resour- * ces. At the same time, the development of Ö.
    [Show full text]
  • 2018 FIFA WORLD CUP RUSSIA'n' WATERWAYS
    - The 2018 FIFA World Cup will be the 21st FIFA World Cup, a quadrennial international football tournament contested by the men's national teams of the member associations of FIFA. It is scheduled to take place in Russia from 14 June to 15 July 2018,[2] 2018 FIFA WORLD CUP RUSSIA’n’WATERWAYS after the country was awarded the hosting rights on 2 December 2010. This will be the rst World Cup held in Europe since 2006; all but one of the stadium venues are in European Russia, west of the Ural Mountains to keep travel time manageable. - The nal tournament will involve 32 national teams, which include 31 teams determined through qualifying competitions and Routes from the Five Seas 14 June - 15 July 2018 the automatically quali ed host team. A total of 64 matches will be played in 12 venues located in 11 cities. The nal will take place on 15 July in Moscow at the Luzhniki Stadium. - The general visa policy of Russia will not apply to the World Cup participants and fans, who will be able to visit Russia without a visa right before and during the competition regardless of their citizenship [https://en.wikipedia.org/wiki/2018_FIFA_World_Cup]. IDWWS SECTION: Rybinsk – Moscow (433 km) Barents Sea WATERWAYS: Volga River, Rybinskoye, Ughlichskoye, Ivan’kovskoye Reservoirs, Moscow Electronic Navigation Charts for Russian Inland Waterways (RIWW) Canal, Ikshinskoye, Pestovskoye, Klyaz’minskoye Reservoirs, Moskva River 600 MOSCOW Luzhniki Arena Stadium (81.000), Spartak Arena Stadium (45.000) White Sea Finland Belomorsk [White Sea] Belomorsk – Petrozavodsk (402 km) Historic towns: Rybinsk, Ughlich, Kimry, Dubna, Dmitrov Baltic Sea Lock 13,2 White Sea – Baltic Canal, Onega Lake Small rivers: Medveditsa, Dubna, Yukhot’, Nerl’, Kimrka, 3 Helsinki 8 4,0 Shosha, Mologa, Sutka 400 402 Arkhangel’sk Towns: Seghezha, Medvezh’yegorsk, Povenets Lock 12,2 Vyborg Lakes: Vygozero, Segozero, Volozero (>60.000 lakes) 4 19 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 1 2 3 6 7 10 14 15 4,0 MOSCOW, Group stage 1/8 1/4 1/2 3 1 Estonia Petrozavodsk IDWWS SECTION: [Baltic Sea] St.
    [Show full text]
  • Why Kaliningrad Region?
    Kaliningrad region Government NEW OPPORTUNITIES FOR BUISNESS DEVELOPMENT GENERAL INFORMATION MAXIMUM LENGTH NORWAY OF THE TERRITORY SWEDEN ESTONIA 108 КМ 108 LATVIA RUSSIA KALININGRAD LITHUANIA 15.1 REGION 205 КМ THS КМ² REGION IRELAND TERRITORY BELARUS ADMINISTRATIVE CENTER GERMANY POLAND 22 ENGLAND CITIES KALININGRAD >480 CHECH UKRAINE THOUSAND PEOPLE SLOVAKIA AUSTRIA MAIN CITIES FRANCE HUNGARY SOVETSK BALTIYSK SWITZERLAND ROMANIA >40K PEOPLE >36K PEOPLE CHERNYAKHOVSK GUSEV ITALY >37K PEOPLE >28K PEOPLE SVETLOGORSK >22K PEOPLE SPAIN BULGARIA PORTUGALPORRTUGALR Kaliningrad region Government GREECE POPULATION 60% WORKING-AGE POPULATION > 1 MIL PEOPLE DATED 01/08/2018 >10 THOUSAND PEOPLE PER YEAR >4.5 MIGRATION THOUSAND 5.2% GROWTH GRADUATES ANNUALLY UNEMPLOYMENT RATE >66 PEOPLE PER KM2 13 POPULATION DENSITY HIGHER EDUCATION 12TH PLACE IN THE RUSSIAN FEDERATION INSTITUTIONS Kaliningrad region Government ECONOMIC 524 $ 102 $ PERFORMANCE 33 536 ₶ 6 579 ₶ PER MONTH М2 PER YEAR AVERAGE SALARY RENTAL PRIСE FOR COMMERCIAL AND OFFICE 10.2 PROPERTIES BN $ 0.06 $ 400 $ 3.7 25 800 ₶ 641.58 BN ₶ kWh PER YEAR FOREIGN TRADE ELECTRICITY PRICE INTERNET PRICE TURNOVER 0.02 $ 2018 1.2 ₶ PER MIN OUTGOING CALLS 7. 2 2.08 0.74 $ 48 ₶ BN $ BN $ PER LITER 417.4 BN ₶ 130.5 BN ₶ PRICE OF GASOLINE GROSS INVESTMENTS CAPITAL REGIONAL DONE BY PRODUCT ORGANIZATIONS 2017 2018 Kaliningrad region Government SPECIAL ECONOMIC ZONE >129 1 BN ₶ MIL ₶ SEZ REGIME COVERS 2 BN $ 0.02 MIL $ THE WHOLE REGION SEZ REGIME IS REGULATED TOTAL AMOUNT MINIMUM BY THE REGIONAL AUTHORITIES
    [Show full text]
  • Documenta Polonica Ex Archivo Generali Hispaniae in Simancas
    DOCUMENTA POLONICA EX ARCHIVO GENERALI HISPANIAE IN SIMANCAS Nova series Volumen I POLISH ACADEMY OF ARTS AND SCIENCES DOCUMENTA POLONICA EX ARCHIVO GENERALI HISPANIAE IN SIMANCAS Nova series Volumen I Edited by Ryszard Skowron in collaboration with Miguel Conde Pazos, Paweł Duda, Enrique Corredera Nilsson, Matylda Urjasz-Raczko Cracow 2015 Research financed by the Minister for Science and Higher Education through the National Programme for the Development of Humanities in 2012-2015 Editor Ryszard Skowron English Translation Sabina Potaczek-Jasionowicz Proofreading of Spanish Texts Cristóbal Sánchez Martos Proofreading of Latin Texts Krzysztof Pawłowski Design & DTP Renata Tomków © Copyright by Polish Academy of Arts and Sciences (PAU) & Ryszard Skowron ISBN 978-83-7676-233-3 Printed and Bound by PASAŻ, ul. Rydlówka 24, Kraków Introduction Between 1963 and 1970, as part of its series Elementa ad Fontiun Editiones, the Polish Historical Institute in Rome issued Documenta polonica ex Archivo Generali Hispaniae in Simancas, seven volumes of documents pertinent to the history of Poland edited by Rev. Walerian Meysztowicz.1 The collections in Simancas are not only important for understanding Polish-Spanish relations, but also very effectively illustrate Poland’s foreign policy in the sixteenth and seventeenth centuries and the role the country played in the international arena. In this respect, the Spanish holdings are second only to the Vatican archives. In terms of the quality and quantity of information, not even the holdings of the Vienna archives illuminate Poland’s European politics on such a scale. Meysztowicz was well aware of this, opening his introduction (Introductio) to the first part of the publication with the sentence: “Res gestae Christianitatis sine Archivo Septimacensi cognosci vix possunt.”2 1 Elementa ad Fontium Editiones, vol.
    [Show full text]
  • Sediment Transport Along the Vistula Spit (The Baltic Sea)
    Russian Science Foundation Project No 14-17-00547 “A forecast development for evolution of accumulative Russian coasts of tideless seas” Laboratory for Coastal Systems Study Sediment transport along the Vistula Spit (the Baltic Sea) Boris Chubarenko, Aleksander Babakov Laboratory for Coastal System Study, Atlantic Branch of P.P.Shirshov Institute of Oceanology Russian Academy of Sciences EMECS11 – Sea Coasts XXVI Joint Conference, August 22-27, 2016 Study area Vistula Lagoon and Vistula Spit belong to the sediment-system of the Gulf of Gdansk Gulf of Gdansk Kaliningrad RUSSIA (Kaliningrad Oblast) Gdansk POLAND Chubarenko B.V., Babakov A.N. Sediment transport along the Vistula Spit (the Baltic Sea). EMECS11 – Sea Coasts XXVI Joint Conference, Sain-Petersburg (Russia), August 22-27, 2016 Study area Historical changes in hydrographic scheme of the Visula Lagoon New outlet of the Vistula River was artificially Pregola River constructed between 1889 and 1895 and officially opened on 31 March 1895 RU Nogat River took up to 85% from the Vistula PL River discharge. Sluice ‘Biala Gora Lock’ was constructed Old Vistula River Delta at the Visla-Nogat divergence point in 1915. It finally separated the Vistula Lagoon from the Vistula River. (Presentation of P. Margonsku, MIR, ARTWEI Project) Motivation Convergence of fluxes at the Yantarny- Unidirectional flux to south Convergence of fluxes at the Baltiysk concave [Beloshapkov, [Zenkovich, 1958] Vistula Lagoon inlet [Boldyrev, Beloshapkova, Brasavs, 1984] Zenkovich, 1982] [Ostrowski, Pruszak, Skaja, [Leontjev, 2012] Convergence of fluxes at the Szmytkiewicz, 2010] central part of the Vistula Spit [Babakov, 2003] Convergence of fluxes at the southern part of the Vistula Spit Chubarenko B.V., Babakov A.N.
    [Show full text]
  • Argus Nefte Transport
    Argus Nefte Transport Oil transportation logistics in the former Soviet Union Volume XVI, 5, May 2017 Primorsk loads first 100,000t diesel cargo Russia’s main outlet for 10ppm diesel exports, the Baltic port of Primorsk, shipped a 100,000t cargo for the first time this month. The diesel was loaded on 4 May on the 113,300t Dong-A Thetis, owned by the South Korean shipping company Dong-A Tanker. The 100,000t cargo of Rosneft product was sold to trading company Vitol for delivery to the Amsterdam-Rotter- dam-Antwerp region, a market participant says. The Dong-A Thetis was loaded at Russian pipeline crude exports berth 3 or 4 — which can handle crude and diesel following a recent upgrade, and mn b/d can accommodate 90,000-150,000t vessels with 15.5m draught. 6.0 Transit crude Russian crude It remains unclear whether larger loadings at Primorsk will become a regular 5.0 occurrence. “Smaller 50,000-60,000t cargoes are more popular and the terminal 4.0 does not always have the opportunity to stockpile larger quantities of diesel for 3.0 export,” a source familiar with operations at the outlet says. But the loading is significant considering the planned 10mn t/yr capacity 2.0 addition to the 15mn t/yr Sever diesel pipeline by 2018. Expansion to 25mn t/yr 1.0 will enable Transneft to divert more diesel to its pipeline system from ports in 0.0 Apr Jul Oct Jan Apr the Baltic states, in particular from the pipeline to the Latvian port of Ventspils.
    [Show full text]
  • The Lower Vistula in the Aspect of the E40 and E70 International Shipping Routes
    Ż. Marciniak | Acta Energetica 2/15 (2013) | 153–161 The lower Vistula in the aspect of the E40 and E70 international shipping routes Author Żaneta Marciniak Keywords shipping route, waterways, inland navigation, E40 international waterway, E70 international waterway Abstract Throughout the history of Europe and the world, shipping routes have determined the develop- ment of many civilisations, since it was along them that settlements and commerce developed, goods and people were transported, and later, industry was located. Currently, shipping routes are an important element in inland transport corridors. The European Union puts particular emphasis on the development of inland and rail transport to balance road transport, which is drastically expanding. Development of inland waterway transport routes in Poland has allies in intensely developing sea ports. The allies of the lower Vistula (dolna Wisła) are the ports in Gdańsk and Gdynia, for which construction of inland ports up-country is an opportunity to increase the trans-shipment capacity. Poland uses the potential of international inland waterways poorly when compared to other European Union countries, which results for instance from the bad technical condition of river engineering structures and from years of neglect in water management. The situation is further amplified by the lack of consistent laws regarding inland navigation and water management, as the responsibility for those issues is shared by several ministries, the institutions they are in charge of and local governments. Governments of the voivodeships situated along the planned international waterways E40 between Warsaw and Gdańsk (Mazowieckie, Kujawsko-Pomorskie, Pomorskie voivodeships) and E70 (Lubuskie, Wielkopolskie, Kujawsko-Pomorskie, Warmińsko-Mazurskie, Pomorskie voivode- ships) can see both the transport and the tourism potential of Polish waterways.
    [Show full text]