energies Article Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon Natalia Kujawska 1, Szymon Talbierz 1, Marcin D˛ebowski 2,* , Joanna Kazimierowicz 3 and Marcin Zieli ´nski 2 1 InnovaTree Sp. z o.o., 81-451 Gdynia, Poland;
[email protected] (N.K.);
[email protected] (S.T.) 2 Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland;
[email protected] 3 Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland;
[email protected] * Correspondence:
[email protected] Abstract: Inexpensive carbon sources offering an alternative to glucose are searched for to reduce costs of docosahexaenoic acid production by microalgae. The use of waste glycerol seems substanti- ated and prospective in this case. The objective of this study was to determine the production yield of heterotrophic microalgae Schizochytrium sp. biomass and the efficiency of docosahexaenoic acid production in various types of cultures with waste glycerol. Cultivation conditions were optimized using the Plackett–Burman method and Response Surface Methodology. The highest technological performance was obtained in the fed-batch culture, where the concentration of Schizochytrium sp. biomass reached 103.44 ± 1.50 g/dm3, the lipid concentration in Schizochytrium sp. biomass was Citation: Kujawska, N.; Talbierz, S.; ± 3 ± 3 D˛ebowski,M.; Kazimierowicz, J.; at 48.85 0.81 g/dm , and the docosahexaenoic acid concentration at 21.98 0.36 g/dm .