National Algal Biofuels Technology Roadmap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
50 Hottest Book 2010-11
The 50 Hottest Companies in Bioenergy 2010-2011 Selectors Data Book Including company profiles, industry data and recommendations 50 Hottest Companies in Bioenergy 2010-11 • Selector Book 1 Copyright © 2010 by James M. Lane All rights reserved under International and Pan-American Copyright Convention. This book, or parts thereof, may not be reproduced in any form without permission. An Ascension Book Published by Ascension Publishing, Inc. 801 Brickell Avenue, Suite 900 Miami, FL 33131 First edition: November 2010 Library of Congress Cataloguing-in-Publication Data Lane, James M. 50 Hottest Companies in Bioenergy Selectors Data Book Guidebook for voters in Biofuels Digest’s annual company ranking. 50 Hottest Companies in Bioenergy 2010-11 Data Book/James M. Lane.—Ist ed. p. cm. 1. United States—Civilization—1970- 2. United States—Politics and government—2010-2020 I. Title 50 Hottest Companies in Bioenergy 2010-11 • Selector Book 2 The 2010-11 50 Hottest Companies in Bioenergy TABLE OF CONTENTS Welcome Letter 4 Instructions for Selectors 5 The Hottest Fuels, Feedstocks and Processing Technologies 6 The 2008-09 50 Hottest Companies in Bioenergy 8 The 2009-10 50 Hottest Companies in Bioenergy 9 The Transformative Technology 30 for 2010 10 The Top 100 People in Bioenergy for 2010 14 The Advanced Biofuels Tracking Database: Current Projects 46 Company Profiles 2009-10 Top 50 companies (in order of rank) 70 Other Companies (in alphabetical order) 224 Some 2010-11 eligible companies not profiled 373 Biofuels Digest Recommendations Hot 50 Recommendations and Hotter than Hell lists 377 50 Hottest Companies in Bioenergy 2010-11 • Selector Book 3 WELCOME! Dear Selector, First of all, thank you for being a selector for this year’s 50 Hottest Companies in Bioenergy. -
Analysis of Land Suitable for Algae Production State of Hawaii
Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai‘i Distributed Energy Resource Technologies for Energy Security Subtask 12.1 Deliverable (item 1) Report on Bioenergy Analyses By the Hawai‘i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai‘i August 2011 Acknowledgement: This material is based upon work supported by the United States Department of Energy under Award Number DE-FC-06NT42847. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference here in to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ii Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele Chillingworth Scott Q. Turn Hawaii Natural Energy Institute School of Ocean and Earth Sciences and Technology University of Hawaii at Manoa August 2011 Executive Summary Algae are considered to be a viable crop for biofuel production because of their projected high productivity rates, their ability to grow in a wide range of water qualities, and their potential for cultivation on land unsuitable for food production. -
Emerging Interaction Patterns in the Emiliania Huxleyi-Ehv System
viruses Article Emerging Interaction Patterns in the Emiliania huxleyi-EhV System Eliana Ruiz 1,*, Monique Oosterhof 1,2, Ruth-Anne Sandaa 1, Aud Larsen 1,3 and António Pagarete 1 1 Department of Biology, University of Bergen, Bergen 5006, Norway; [email protected] (R.-A.S.); [email protected] (A.P.) 2 NRL for fish, Shellfish and Crustacean Diseases, Central Veterinary Institute of Wageningen UR, Lelystad 8221 RA, The Nederlands; [email protected] 3 Uni Research Environment, Nygårdsgaten 112, Bergen 5008, Norway; [email protected] * Correspondence: [email protected]; Tel.: +47-5558-8194 Academic Editors: Mathias Middelboe and Corina Brussaard Received: 30 January 2017; Accepted: 16 March 2017; Published: 22 March 2017 Abstract: Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed. Keywords: Phycodnaviridae; Coccolithovirus; Coccolithophore; Haptophyta; Killing-the-winner; cost of resistance; infectivity trade-offs; algae virus; marine viral ecology; viral-host interactions 1. -
Engineering and Technology Effective Term: Spring 2017
Curriculum Standard for Engineering and Technology: Civil Engineering and Geomatics Technologies Career Cluster: Science, Technology, Engineering, Mathematics** Cluster Description: Planning, managing, and providing scientific research and professional and technical services (e.g., physical science, social science, and engineering) including laboratory and testing services, and research and development services. Pathway: Engineering and Technology Effective Term: Spring 2017 (2017*01) Program Majors Under Pathway Program Major / Classification of Instruction Programs (CIP) Code Credential Level(s) Program Major Offered Code Civil Engineering Technology CIP Code: 15.0201 AAS/Diploma/Certificate A40140 Environmental Engineering Technology CIP Code: 15.0507 AAS/Diploma/Certificate A40150 Geomatics Technology CIP Code: 15.1102 AAS/Diploma/Certificate A40420 Pathway Description: These curriculums are designed to prepare students through the study and application of principles from mathematics, natural sciences, and technology and applied processes based on these subjects. Course work includes mathematics, natural sciences, engineering sciences and technology. Graduates should qualify to obtain occupations such as technical service providers, materials and technologies testing services, engineering technicians, construction technicians and managers, industrial and technology managers, or research technicians. Program Description: Choose one of the following 4th paragraphs to use in conjunction with the first three paragraphs of the pathway -
The Role and Status of Hydrogen and Fuel Cells Across the Global Energy System
The role and status of hydrogen and fuel cells across the global energy system Iain Staffell(a), Daniel Scamman(b), Anthony Velazquez Abad(b), Paul Balcombe(c), Paul E. Dodds(b), Paul Ekins(b), Nilay Shah(d) and Kate R. Ward(a). (a) Centre for Environmental Policy, Imperial College London, London SW7 1NE. (b) UCL Institute for Sustainable Resources, University College London, London WC1H 0NN. (c) Sustainable Gas Institute, Imperial College London, SW7 1NA. (d) Centre for Process Systems Engineering, Dept of Chemical Engineering, Imperial College London, London SW7 2AZ. Abstract Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. -
(CYP97C) from the Green Alga Haematococcus Pluvialis
J Appl Phycol (2014) 26:91–103 DOI 10.1007/s10811-013-0055-y Gene cloning and expression profile of a novel carotenoid hydroxylase (CYP97C) from the green alga Haematococcus pluvialis Hongli Cui & Xiaona Yu & Yan Wang & Yulin Cui & Xueqin Li & Zhaopu Liu & Song Qin Received: 9 December 2012 /Revised and accepted: 16 May 2013 /Published online: 25 July 2013 # Springer Science+Business Media Dordrecht 2013 Abstract A full-length complementary DNA (cDNA) se- isoelectric point of 7.94. Multiple alignment analysis revealed quence of ε-ring CHY (designated Haecyp97c) was cloned that the deduced amino acid sequence of HaeCYP97C shared from the green alga Haematococcus pluvialis by reverse high identity of 72–85 % with corresponding CYP97Cs from transcription polymerase chain reaction (RT-PCR) and rapid other eukaryotes. The catalytic motifs of cytochrome P450s amplification of cDNA ends methods. The Haecyp97c were detected in the amino acid sequence of HaeCYP97C. cDNA sequence was 1,995 base pairs (bp) in length, which The transcriptional levels of Haecyp97c and xanthophylls accu- contained a 1,620-bp open reading frame, a 46-bp 5′- mulation under high light (HL) stress have been examined. The untranslated region (UTR), and a 329-bp 3′-UTR with the results revealed that Haecyp97c transcript was strongly in- characteristic of the poly (A) tail. The deduced protein had a creased after 13–28 h under HL stress. Meanwhile, the concen- calculated molecular mass of 58.71 kDa with an estimated trations of chlorophylls, carotenes, and lutein were decreased, and zeaxanthin and astaxanthin concentrations were increased rapidly, respectively. These facts indicated that HaeCYP97C H. -
Investigating the Effects of Growth Medium and Light Sources on the Growth of Botryococcus Braunii
Investigating the Effects of Growth Medium and Light Sources on the Growth of Botryococcus Braunii Ayse Busra Sengul, [email protected] Muhammad Mustafizur Rahman, [email protected] Eylem Asmatulu, [email protected] Department of Mechanical Engineering Wichita State University 1845 Fairmount St., Wichita, KS 67260, USA ABSTRACT emission can be reduced by developing renewable and sustainable energy sources which will also protect the In the present study, the effect of medium and light natural resources, such as water, soil and air. Liquid source on the growth of B. braunii was investigated for transportation fuels reason the one third of the fossil-fuel large-scale and economical production of biomass and carbon emissions footprint [1]. Biofuel can be a key hydrocarbons. Three types of media and light sources solution for all these challenges. Biodiesel is an alternative were used with incubation temperature of 23±2°C under fuel which can be produced from domestic renewable different light source with a 12h-light/12h-dark cycle to energy resources. It can also be used in diesel engines with observe different growth rates. The growth rate of B. small or no modification. Biodiesel is nontoxic and free of braunii was measured via ultraviolet visible (UV-Vis) sulfur, and can be blended at any level with petroleum spectrophotometry and biomass dry weight. The results of diesel to produce a biodiesel mixture [3]. this study showed the maximum growth rate was Algae are photosynthetic and heterotrophic organisms reached after approximately three weeks of incubation and has huge potential as a biofuel source. They have the and then was followed by the stationary phase. -
Hydrogen Technology Towards the Solutionof Environment-Friendly
energies Article Hydrogen Technology towards the Solution of Environment-Friendly New Energy Vehicles Murat Peksen Multiphysics Energy Solutions (MES), 52070 Aachen, Germany; [email protected] Abstract: The popularity of climate neutral new energy vehicles for reduced emissions and improved air quality has been raising great attention for many years. World-wide, a strong commitment continues to drive the demand for zero-emission through alternative energy sources and propulsion systems. Despite the fact that 71.27% of hydrogen is produced from natural gas, green hydrogen is a promising clean way to contribute to and maintain a climate neutral ecosystem. Thereby, reaching CO2 targets for 2030 and beyond requires cross-sectoral changes. However, the strong motivation of governments for climate neutrality is challenging many sectors. One of them is the transport sector, as it is challenged to find viable all-in solutions that satisfy social, economic, and sustainable requirements. Currently, the use of new energy vehicles operating on green sustainable hydrogen technologies, such as batteries or fuel cells, has been the focus for reducing the mobility induced emissions. In Europe, 50% of the total emissions result from mobility. The following article reviews the background, ongoing challenges and potentials of new energy vehicles towards the development of an environmentally friendly hydrogen economy. A change management process mindset has been adapted to discuss the key scientific and commercial challenges for a successful transition. Keywords: hydrogen; sustainability; ecosystem; fuel cell; electrification; transport; change management; new energy vehicle Citation: Peksen, M. Hydrogen Technology towards the Solution of Environment-Friendly New Energy Vehicles. Energies 2021, 14, 4892. -
Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B. -
The Role of Green Public Procurement
AUGUST 2019 CURBING CARBON FROM CONSUMPTION THE ROLE OF GREEN PUBLIC PROCUREMENT Ali Hasanbeigi | Renilde Becqué | Cecilia Springer Acknowledgements This report was made possible with the support from ClimateWorks Foundation. The authors would like to thank Prodipto Roy of ClimateWorks Foundation, Joost Bouten of Dutch Rijkswaterstaat, Shannon Tsang of UC Berkeley, Bo Shen and Nina Zheng of Lawrence Berkeley National Laboratory, Nan Wishner, and Christine Delada for their valuable input to this study and/or their insightful comments on the earlier version of this document. Disclaimer Global Eciency Intelligence, LLC has provided the information in this publication for informational purposes only. Although great care has been taken to maintain the accuracy of information collected and presented, Global Eciency Intelligence, LLC do not make any express or implied warranty concerning such information. Any estimates contained in the publication reflect Global Eciency Intelligence, LLC’s current analyses and expectations based on available data and information. Any reference to a specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply an endorsement, recommendation, or favoring by Global Eciency Intelligence, LLC. This document may be freely quoted or reprinted, but acknowledgment is requested. Please cite as: Hasanbeigi, A., Becque, R., Springer, C. 2019. Curbing Carbon from Consumption: The role of Green Public Procurement. San Francisco CA: Global Eciency Intelligence. Curbing Carbon from Consumption: The Role of Green Public Procurement 1 Executive Summary Because public entities exercise large-scale purchasing power in contracts for goods, services, and construction of infrastructure, policies prioritizing environmentally and socially responsible purchasing can drive markets in the direction of sustainability. -
A New Dawn for Industrial Photosynthesis
A New Dawn for Industrial Photosynthesis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Robertson, Dan E., Stuart A. Jacobson, Frederick Morgan, David Berry, George M. Church, and Noubar B. Afeyan. 2011. A new dawn for industrial photosynthesis. Photosynthesis Research 107(3): 269-277. Published Version doi://10.1007/s11120-011-9631-7 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5130453 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Photosynth Res (2011) 107:269–277 DOI 10.1007/s11120-011-9631-7 REGULAR PAPER A new dawn for industrial photosynthesis Dan E. Robertson • Stuart A. Jacobson • Frederick Morgan • David Berry • George M. Church • Noubar B. Afeyan Received: 5 October 2010 / Accepted: 26 January 2011 / Published online: 13 February 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Several emerging technologies are aiming to conversion. This analysis addresses solar capture and meet renewable fuel standards, mitigate greenhouse gas conversion efficiencies and introduces a unique systems emissions, and provide viable alternatives to fossil fuels. approach, enabled by advances in strain engineering, Direct conversion of solar energy into fungible liquid fuel photobioreactor design, and a process that contradicts is a particularly attractive option, though conversion of that prejudicial opinions about the viability of industrial pho- energy on an industrial scale depends on the efficiency of tosynthesis. -
Alternate Algae Fuel Spencer Meredith Columbus State
RUNNING HEAD: ALTERNATE ALGAE FUEL 1 Alternate Algae Fuel Spencer Meredith Columbus State Community College ALTERNATE ALGAE FUEL 2 Abstract Hold your nose as we dive into the aquatic world of microalgae. Conducting research seeking a renewable energy source, I found algae has the potential to change the world for the better. The oil from algae species can be turned into a biofuel, fuel produced from agricultural processes that can be used in transportation engines. This fuel and overall process of algae production has been found to be a safer and more environmental friendly process than fossil fuels. Also, algae grows in water, making it farmable in many different ways, each system holding their own unique advantages. What stands in the way of commercial viability is the amount of money needed to build enough mechanisms that make algae a cheaper and more available fuel than the current fossil fuel, but scientist remain determined and believe it can work. Keywords: Biofuel, Algae Oil, Alternate Energy ALTERNATE ALGAE FUEL 3 Alternate Algae Fuel "We are going to exit the fossil fuel era. It is inevitable.” says Elon Musk, CEO and lead designer of multiple prodigious projects (Felix, 2015). Musk is the head developer of Space-X, a multi-billion dollar private spacecraft company with goals of colonizing Mars. He also invented the hyperloop, a machine that will carry passengers from Los Angeles to San Francisco in thirty- five minutes, normally a seven hour drive. The superstar inventor also works closely to refine Tesla, Inc., an automotive electric car company. Needless to say, Musk is in touch with the current environmental needs of the world and his thoughts on drastically reducing the use of fossil fuels is a commonly shared opinion among a greater part of the science community.