Georg Cantor James L

Total Page:16

File Type:pdf, Size:1020Kb

Georg Cantor James L Georg Cantor James L. Marden Georg Cantor's Life Georg Cantor was born in 1845 in St. Petersburg to Georg Waldemar Cantor and Maria Anna Bhm. Cantors mother was very musical and encouraged him to play the violin, which he excelled at incredibly. Georgs father was a successful merchant from Denmark with an appreciation for the arts. Early in his life Georg was educated by a private tutor until attending a primary school in St. Petersburg. The Cantor family moved to Germany when Georg was eleven. After his father fell into poor health and the family had moved several times, Georg became a boarder at the Realschule in Darmstadt. In 1862, he began university studies at the Polytechnic of Zurich with dreams of becoming an engineer. His dreams ended quickly as he became very devoted to pure and theoretical mathematics. Cantor joined the Schellbach Seminar in 1868, a group for teachers of math- ematics. He continued his work at the University of Halle where he became Extraordinary Professor in 1872. His position was upgraded to full Professor in 1879, achieving this rank at 34. Cantor aspired to hold chair at a more prestigious institution, yet was restrained by the mathematical communitys resistance to his revolutionary theory. No universities in Germany wanted to take on such a radical and award him a high-ranking position. Especially at the University of Berlin, the mathematics department, headed by Leopold Kronecker, was especially conservative. Cantor was described as a corrupter of the youth and was outcast by many more traditional mathematicians. Cantor married Vally Guttmann in 1874. The two had six children together over the coming Cantor continued to work at Halle through the 1880s, strug- gling with bouts of depression after his close friend and mathematical partner Richard Dedekind. He lost his self-confidence and drive to focus on rigor- ous mathematics and transitioned into teaching philosophy. He lectured on mostly Shakespearean and Victorian literature. He eventually published two pamphlets on the subject late in the 1890s. After this he returned to true mathematics. His return was glorious, he created his most famous proof, the diagonal ar- gument. This gave him the fame and reputation to become a trustworthy and reputable mathematician. He was elected as the first president of the Deutsche Mathematiker-Vereinigung, a society of German mathematicians. He was elected over Kronecker, a major victory for the advancement of math- ematics. Cantor's struggles with depression were worsened by his challenge with the continuum hypothesis. His inability to answer the question of whether or not there is a set whose cardinality is strictly between that of the integers and the real numbers drove him to depression. This problem would eventually be shown to be unanswerable, causing it to become an axiom of set theory rather than something to be shown within gthe field. 2 Cantors youngest son Rudolph died suddenly in 1903, leading to another hospitalization for depression. In 1904, Cantor was publicly humiliated with a paper claiming to disprove set theory. The paper was shown to be flawed a day after it was presented, but still haunted Cantor for the rest of his life. He lived in and out of hospitals and struggled with depression for the rest of his life, but continued to lecture on mathematics. Most of his lectures concerned paradoxes. Cantor attended the International Congress of Mathematicians for the last time in 1904. He faded out of the mathematical community until officially retiring in 1913. He lived the rest of his life in poverty. He lived through the war mostly in sanatoriums, where he eventually died in 1918. 3 Georg Cantor's mathematical works Cantors most influential and groundbreaking work was in Set Theory. Be- fore the 18th century he only references to set theory came from Aristotle. However these were incredibly elementary ideas. They were limited to finite sets with no real application or possibility for furthering mathematically. In Bernard Bolzano (1781-1848) established Naive Set Theory. He described the concept of sets as: an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference. However, in his work, there could not be infinite sets. He effectively only worked with subsets and tried to show one to one correspondence. His work would eventually become a smaller part of Cantors larger Set Theory. Can- tor put Set Theory into a strong mathematical basis. Cantors first paper directly concerning Set Theory was an article in Crelles journal. This was an important mathematical journal at the time in Europe. He also pub- lished follow-up works in this journal. However, the editorial staff, including 4 Leopold Kronecker, did not appreciate Cantors new and revolutionary ideas. Cantor used many proofs by geometry in the beginning of his work on cor- respondence. He showed for instance that two lines of different finite lengths and endpoints had an equal number of points. This can then be used later to prove that for instance: there are an equal number of numbers in two intervals of different sizes. As counter-intuitive as this sounds, it was one of Cantor's conclusions. Think of it this way: For the numbers one to ten, there are matching multiples of ten from ten to one hundred (1-10, 2-20, etc.) Now we can split these numbers in half and still maintain correspondence. (3.5-35, 4.5-45, etc.) One can continue the splitting infinitely. 5 Cantor created his first proof of uncountability was published in 1874. This was unlike any of his other work.His article was under five pages, but pre- sented two new theorems as well as ideas on dense sequences and "Cantor Construction." His first theory addressed the roots of polynomials. He went to show that Cantor's most well known proof is his proof by diagonalization. Similar to the one outlined before, this argument show correspondence. He went on to use this form of proof in many ways. He used it to show the uncountability of real numbers, 6 Georg Cantor's Collaboration with Other Scholars Cantors most significant partnership was with Richard Dedekind. He and Dedekind met while Cantor was on vacation in Switzerland. The two recon- nected while Cantor was on his honeymoon. Cantor and Dedekind continued to send letters to one another, some discussing mathematics, others just dis- cussing life. One such letter from Cantor to Dedekind in January of 1874 reads: Can a surface (say a square that includes the boundary) be uniquely referred to a line (say a straight line segment that includes the end points) so that for every point on the surface there is a corresponding point of the line and, conversely, for every point of the line there is a corresponding point of the surface? I think that answering this question would be no easy job, despite the fact that the answer seems so clearly to be "no" that proof appears almost unnecessary. Reminiscent of Euclids fifth axiom, this idea became the basis of most of Cantors lifes work. Just three years later, Cantor proved the one to one cor- respondence of the numbers [0,1] to points in p-dimensional space. This was so remarkable to him, as he had thought the answer would be a resounding no, that he wrote to Dedekind I see it, but I dont believe it! 7 He went on to show that there was not however correspondence between the numbers [0,1] and the set of unit squares. The two often referenced one anothers work. They clearly built off one another. Cantors work in trigonometry aided Dedekinds theorem on rational and irrational numbers by Dedekind Cuts. Years later, a seat opened at the University of Halle, Cantor suggested Dedekind for the position, yet Dedekind declined. This ended their mathematical correspondence within a year. Filling that void was Gsta Mittag-Leffler. Cantor began publishing in his journal Acta Mathematica within a year. Their mathematical influence was not as deep and ended with mostly editing papers. Cantor also presented Hilbert with a paradox on sets. One of Cantors mentors, Eduard Heine was one of the pioneers of subset theory, the logical predecessor to set theory. Felix Klein, another German mathematician, specializing in group theory and geometry influenced some of Cantors publications. He aided Cantor in the publication of Mathematische Annalen, and also helped Cantor get a solid mathematical basis to set theory. Klein became the primary editor of Cantors final works at the end of the 19th century. He helped to prove Cantors work on Well-Ordered and Ordinal numbers. 8 Filling that void was Gsta Mittag-Leffler. Cantor began publishing in his journal Acta Mathematica within a year. Their mathematical influence was not as deep and ended with mostly editing papers. Cantor also presented Hilbert with a paradox on sets. One of Cantors mentors, Eduard Heine was one of the pioneers of subset theory, the logical predecessor to set theory. Historical Events that Marked Georg Cantor's Life. The world was fairly stagnant during the time of Cantor's actual work. Shortly after Cantor's birth, the French Revolution occurred. There were also uprisings across Europe, including Berlin and Vienna. Russian history is moderately turbulent at the beginning of Cantors life, when he lived in Saint Petersburg. The French and Turkish declared war on Russia in 1854. This is likely why his family left the country and moved to the far safer Germany from Saint Petersburg just two years later. Within Germany, the Reich of Otto Von Bismark was mostly tranquil. The Socialist party was on the rise, but did not ever take any action until after Cantor's career ended.
Recommended publications
  • Richard Dedekind English Version
    RICHARD DEDEKIND (October 6, 1831 – February 12, 1916) by HEINZ KLAUS STRICK, Germany The biography of JULIUS WILHELM RICHARD DEDEKIND begins and ends in Braunschweig (Brunswick): The fourth child of a professor of law at the Collegium Carolinum, he attended the Martino-Katherineum, a traditional gymnasium (secondary school) in the city. At the age of 16, the boy, who was also a highly gifted musician, transferred to the Collegium Carolinum, an educational institution that would pave the way for him to enter the university after high school. There he prepared for future studies in mathematics. In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the end of his life and at the time was involved primarily in activities related to astronomy. After only four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. He was GAUSS’s last doctoral student. (drawings © Andreas Strick) He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia legendi (official permission allowing those completing their habilitation to lecture), he gave lectures on probability theory and geometry. Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, who at the time were mostly preparing students to become secondary-school teachers, had lost contact with current developments in mathematics; this in contrast to the University of Berlin, at which PETER GUSTAV LEJEUNE DIRICHLET taught.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • Bernhard Riemann 1826-1866
    Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]
  • On History of Epsilontics
    ANTIQUITATES MATHEMATICAE Vol. 10(1) 2016, p. xx–zz doi: 10.14708/am.v10i0.805 Galina Ivanovna Sinkevich∗ (St. Petersburg) On History of Epsilontics Abstract. This is a review of genesis of − δ language in works of mathematicians of the 19th century. It shows that although the sym- bols and δ were initially introduced in 1823 by Cauchy, no functional relationship for δ as a function of was ever ever specied by Cauchy. It was only in 1861 that the epsilon-delta method manifested itself to the full in Weierstrass denition of a limit. The article gives various interpretations of these issues later provided by mathematicians. This article presents the text [Sinkevich, 2012d] of the same author which is slightly redone and translated into English. 2010 Mathematics Subject Classication: 01A50; 01A55; 01A60. Key words and phrases: History of mathematics, analysis, continu- ity, Lagrange, Ampére, Cauchy, Bolzano, Heine, Cantor, Weierstrass, Lebesgue, Dini.. It is mere feedback-style ahistory to read Cauchy (and contemporaries such as Bernard Bolzano) as if they had read Weierstrass already. On the contrary, their own pre-Weierstrassian muddles need historical reconstruction. [Grattan-Guinness 2004, p. 176]. Since the early antiquity the concept of continuity was described throgh the notions of time, motion, divisibility, contact1 . The ideas about functional accuracy came with the extension of mathematical interpretation to natural-science observations. Physical and geometrical notions of continuity became insucient, ultimately ∗ Galina Ivanovna Sinkeviq 1The 'continuous' is a subdivision of the contiguous: things are called continuous when the touching limits of each become one and the same and are, as the word implies, contained in each other: continuity is impossible if these extremities are two.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Cantor and Continuity
    Cantor and Continuity Akihiro Kanamori May 1, 2018 Georg Cantor (1845-1919), with his seminal work on sets and number, brought forth a new field of inquiry, set theory, and ushered in a way of proceeding in mathematics, one at base infinitary, topological, and combinatorial. While this was the thrust, his work at the beginning was embedded in issues and concerns of real analysis and contributed fundamentally to its 19th Century rigorization, a development turning on limits and continuity. And a continuing engagement with limits and continuity would be very much part of Cantor's mathematical journey, even as dramatically new conceptualizations emerged. Evolutionary accounts of Cantor's work mostly underscore his progressive ascent through set- theoretic constructs to transfinite number, this as the storied beginnings of set theory. In this article, we consider Cantor's work with a steady focus on con- tinuity, putting it first into the context of rigorization and then pursuing the increasingly set-theoretic constructs leading to its further elucidations. Beyond providing a narrative through the historical record about Cantor's progress, we will bring out three aspectual motifs bearing on the history and na- ture of mathematics. First, with Cantor the first mathematician to be engaged with limits and continuity through progressive activity over many years, one can see how incipiently metaphysical conceptualizations can become systemati- cally transmuted through mathematical formulations and results so that one can chart progress on the understanding of concepts. Second, with counterweight put on Cantor's early career, one can see the drive of mathematical necessity pressing through Cantor's work toward extensional mathematics, the increasing objectification of concepts compelled, and compelled only by, his mathematical investigation of aspects of continuity and culminating in the transfinite numbers and set theory.
    [Show full text]
  • Introduction: the 1930S Revolution
    PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY Introduction: The 1930s Revolution The theory of computability was launched in the 1930s by a group of young math- ematicians and logicians who proposed new, exact, characterizations of the idea of algorithmic computability. The most prominent of these young iconoclasts were Kurt Gödel, Alonzo Church, and Alan Turing. Others also contributed to the new field, most notably Jacques Herbrand, Emil Post, Stephen Kleene, and J. Barkley Rosser. This seminal research not only established the theoretical basis for computability: these key thinkers revolutionized and reshaped the mathematical world—a revolu- tion that culminated in the Information Age. Their motive, however, was not to pioneer the discipline that we now know as theoretical computer science, although with hindsight this is indeed what they did. Nor was their motive to design electronic digital computers, although Turing did go on to do so (in fact producing the first complete paper design that the world had seen for an electronic stored-program universal computer). Their work was rather the continuation of decades of intensive investigation into that most abstract of subjects, the foundations of mathematics—investigations carried out by such great thinkers as Leopold Kronecker, Richard Dedekind, Gottlob Frege, Bertrand Russell, David Hilbert, L. E. J. Brouwer, Paul Bernays, and John von Neumann. The concept of an algorithm, or an effective or computable procedure, was central during these decades of foundational study, although for a long time no attempt was made to characterize the intuitive concept formally. This changed when Hilbert’s foundation- alist program, and especially the issue of decidability, made it imperative to provide an exact characterization of the idea of a computable function—or algorithmically calculable function, or effectively calculable function, or decidable predicate.
    [Show full text]
  • 2.5. INFINITE SETS Now That We Have Covered the Basics of Elementary
    2.5. INFINITE SETS Now that we have covered the basics of elementary set theory in the previous sections, we are ready to turn to infinite sets and some more advanced concepts in this area. Shortly after Georg Cantor laid out the core principles of his new theory of sets in the late 19th century, his work led him to a trove of controversial and groundbreaking results related to the cardinalities of infinite sets. We will explore some of these extraordinary findings, including Cantor’s eponymous theorem on power sets and his famous diagonal argument, both of which imply that infinite sets come in different “sizes.” We also present one of the grandest problems in all of mathematics – the Continuum Hypothesis, which posits that the cardinality of the continuum (i.e. the set of all points on a line) is equal to that of the power set of the set of natural numbers. Lastly, we conclude this section with a foray into transfinite arithmetic, an extension of the usual arithmetic with finite numbers that includes operations with so-called aleph numbers – the cardinal numbers of infinite sets. If all of this sounds rather outlandish at the moment, don’t be surprised. The properties of infinite sets can be highly counter-intuitive and you may likely be in total disbelief after encountering some of Cantor’s theorems for the first time. Cantor himself said it best: after deducing that there are just as many points on the unit interval (0,1) as there are in n-dimensional space1, he wrote to his friend and colleague Richard Dedekind: “I see it, but I don’t believe it!” The Tricky Nature of Infinity Throughout the ages, human beings have always wondered about infinity and the notion of uncountability.
    [Show full text]
  • Project Gutenberg's Essays on the Theory of Numbers, by Richard
    Project Gutenberg’s Essays on the Theory of Numbers, by Richard Dedekind This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.net Title: Essays on the Theory of Numbers Author: Richard Dedekind Translator: Wooster Woodruff Beman Release Date: April 8, 2007 [EBook #21016] Language: English Character set encoding: TeX *** START OF THE PROJECT GUTENBERG EBOOK THEORY OF NUMBERS *** Produced by Jonathan Ingram, Keith Edkins and the Online Distributed Proofreading Team at http://www.pgdp.net Transcriber’s Note: The symbol 3 is used as an approximation to the au- thor’s Part-of symbol, not to be confused with the digit 3. Internal page ref- erences have been been adjusted to fit the pagination of this edition. A few typographical errors have been corrected - these are noted at the very end of the text. IN THE SAME SERIES. ON CONTINUITY AND IRRATIONAL NUMBERS, and ON THE NATURE AND MEANING OF NUMBERS. By R. Dedekind. From the German by W. W. Beman. Pages, 115. Cloth, 75 cents net (3s. 6d. net). GEOMETRIC EXERCISES IN PAPER-FOLDING. By T. Sundara Row. Edited and revised by W. W. Beman and D. E. Smith. With many half-tone engravings from photographs of actual exercises, and a package of papers for folding. Pages, circa 200. Cloth, $1.00. net (4s. 6d. net). (In Preparation.) ON THE STUDY AND DIFFICULTIES OF MATHEMATICS.
    [Show full text]
  • The Project Gutenberg Ebook #31061: a History of Mathematics
    The Project Gutenberg EBook of A History of Mathematics, by Florian Cajori This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: A History of Mathematics Author: Florian Cajori Release Date: January 24, 2010 [EBook #31061] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK A HISTORY OF MATHEMATICS *** Produced by Andrew D. Hwang, Peter Vachuska, Carl Hudkins and the Online Distributed Proofreading Team at http://www.pgdp.net transcriber's note Figures may have been moved with respect to the surrounding text. Minor typographical corrections and presentational changes have been made without comment. This PDF file is formatted for screen viewing, but may be easily formatted for printing. Please consult the preamble of the LATEX source file for instructions. A HISTORY OF MATHEMATICS A HISTORY OF MATHEMATICS BY FLORIAN CAJORI, Ph.D. Formerly Professor of Applied Mathematics in the Tulane University of Louisiana; now Professor of Physics in Colorado College \I am sure that no subject loses more than mathematics by any attempt to dissociate it from its history."|J. W. L. Glaisher New York THE MACMILLAN COMPANY LONDON: MACMILLAN & CO., Ltd. 1909 All rights reserved Copyright, 1893, By MACMILLAN AND CO. Set up and electrotyped January, 1894. Reprinted March, 1895; October, 1897; November, 1901; January, 1906; July, 1909. Norwood Pre&: J. S. Cushing & Co.|Berwick & Smith.
    [Show full text]